岩性油气藏 ›› 2021, Vol. 33 ›› Issue (1): 161–174.doi: 10.12108/yxyqc.20210115

• 油气地质 • 上一篇    下一篇

柴达木盆地英雄岭南带断裂活动特征及其控藏作用

卢恩俊1,2,3, 柳少波1,2,3, 于志超1,2,3, 鲁雪松1,2,3, 成定树4   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 提高石油采收率国家重点实验室, 北京 100083;
    3. 中国石油天然气集团公司盆地构造与油气成藏重点实验室, 北京 100083;
    4. 中国石油青海油田分公司勘探开发研究院, 甘肃 敦煌 736202
  • 收稿日期:2020-02-20 修回日期:2020-06-29 出版日期:2021-02-01 发布日期:2021-01-25
  • 通讯作者: 柳少波(1967-),男,博士,教授,博士生导师,教授级高级工程师,主要从事油气成藏方面的研究工作。Email:lsb@petrochina.com.cn。 E-mail:lsb@petrochina.com.cn
  • 作者简介:卢恩俊(1994-),男,中国石油勘探开发研究院在读硕士研究生,研究方向为盆地与构造分析、油气成藏。地址:(100083)北京市海淀区学院路20号中国石油勘探开发研究院。Email:1521185384@qq.com
  • 基金资助:
    国家油气重大专项“前陆冲断带及复杂构造区油气成藏、分布规律与有利区评价”(编号:2016ZX05003-002)和中国石油天然气股份有限公司科学研究与技术开发项目“柴达木盆地油气地质理论深化研究”(编号:2016E-0101)联合资助

Characteristics of fault activity and its control on hydrocarbon accumulation in southern Yingxiongling area,Qaidam Basin

LU Enjun1,2,3, LIU Shaobo1,2,3, YU Zhichao1,2,3, LU Xuesong1,2,3, CHENG Dingshu4   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    2. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China;
    3. Key Laboratory of Basin Structure and Hydrocarbon Accumulation, CNPC, Beijing 100083, China;
    4. Research Institute Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2020-02-20 Revised:2020-06-29 Online:2021-02-01 Published:2021-01-25

摘要: 柴达木盆地英雄岭南带断裂发育,但断裂控制油气成藏的规律不太清楚。通过重新解释该地区地震剖面,分析了5条主要断裂:狮子沟断裂、Ⅰ号断裂、Ⅱ号断裂、油砂山断裂、Ⅺ号断裂,研究了断裂级次、构造样式、活动强度和演化过程,以及通过分析英雄岭南带油藏生物标志物特征和油气充注期次,探讨了断裂对油气成藏的控制作用。结果表明:①Ⅰ号、Ⅱ号、Ⅺ号断裂属于软弱层(膏盐岩+泥岩)之下断裂,形成于古近纪,其中Ⅱ号、Ⅺ号断裂由多条断裂叠加生长形成,狮子沟与油砂山断裂属于软弱层之上断裂,形成于新近纪,由单一断裂生长形成。②浅层构造带油气是深层油气向上运移的结果,控藏断裂的活动性与油气生烃期和圈闭的形成期相匹配。③断裂控藏演化分为3个阶段:下干柴沟组上段沉积期,基底断裂控制烃源岩形成;下油砂山组沉积期,滑脱断裂控制低熟油气成藏;上油砂山组沉积期,滑脱断裂控制成熟油气成藏,同时对早期低熟油气藏进行改造。不同断裂活动特征的差异性是造成英雄岭南带成藏差异性的主控因素之一。

关键词: 断裂活动性, 油气成藏, 构造演化, 成藏期次, 英雄岭南带

Abstract: Faults are widely distributed in southern Yingxiongling area,Qaidam Basin. The control of the faults on hydrocarbon accumulation is unclear. Through reinterpretation of seismic profiles in this area,five main faults were analyzed:Shizigou fault,Ⅰ fault,Ⅱ fault,Youshashan fault and Ⅺ fault. The fault grade,structural style, activity intensity and evolution process were studied,and the control effect of faults on hydrocarbon accumulation was discussed by analyzing the characteristics of biomarkers and oil and gas filling periods in southern Yingxiongling area. The results show that:(1)Ⅰ,Ⅱ and Ⅺ faults belong to the faults under the weak layer (gypsum salt rock + mudstone)and formed in Paleogene,among which Ⅱ fault and Ⅺ fault were formed by superposition of multiple faults,while Shizigou and Youshashan faults belong to faults above the weak layer,and be formed by single fault growth in Neogene.(2)Oil and gas in shallow structural belt are the result of upward migration of deep oil and gas. The activity of reservoir controlling faults matches with hydrocarbon generation period and the formation period of traps.(3)The evolution of the fault-controlling reservoir model can be divided into three stages:basement faults control the formation of source rocks in the upper Xiaganchaigou Formation;detachment faults control the accumulation of low-mature oil and gas reservoirs in the lower Youshashan Formation. detachment faults control mature hydrocarbon accumulation in the upper Youshashan Formation,and reform the early low mature oil and gas reservoirs. The difference of different fault activity characteristics is one of the main controlling factors for the difference of hydrocarbon accumulation in southern Yingxiongling area.

Key words: fault activity, hydrocarbon accumulation, structural evolution, accumulation stage, southern Yingxiongling area

中图分类号: 

  • TE122.3
[1] 罗群. 断裂控烃理论与油气勘探实践. 地球科学——中国地质大学,2002,27(6):751-756. LUO Q. Fault controlling hydrocarbon theory and petroleum exploration practice. Earth Science-Journal of China University of Geosciences,2002,27(6):751-756.
[2] 罗群. 断裂控烃理论的概念、原理、模式与意义. 石油勘探与开发,2010,37(3):316-324. LUO Q. Concept,principle,model and significance of the fault controlling hydrocarbon theory. Petroleum Exploration and Development, 2010,37(3):316-324.
[3] 吴光大. 柴达木盆地构造特征及其对油气分布的控制. 长春:吉林大学,2007. WU G D. Study on the tectonic in Qaidam Basin and its control to the hydrocarbon distribution. Changchun:Jilin University,2007.
[4] 戴俊生,叶兴树,汤良杰,等. 柴达木盆地构造分区及其油气远景. 地质科学,2003,38(3):291-296. DAI J S,YE X S,TANG L J,et al. Tectonic units and oil-gas potential of the Qaidam Basin. Geology Science,2003,38(3):291-296.
[5] 罗群,庞雄奇. 柴达木盆地断裂特征与油气区带成藏规律. 西南石油学院学报,2003,25(1):1-5. LUO Q,PANG X Q. The characteristics of fault system and its control role to petroleum zone in Qaidam Basin. Journal of Southwest Petroleum Institute,2003,25(1):1-5.
[6] 陈少军,罗群,王铁成,等. 柴达木盆地断裂特征及其对油气分布的控制作用. 新疆石油地质,2004,25(1):22-25. CHEN S J,LUO Q,WANG T C,et al. Faulting characteristics and effects on hydrocarbon distribution in Qaidam Basin. Xinjiang Petroleum Geology,2004,25(1):22-25.
[7] 孙德君,罗群. 柴达木盆地断裂系统特征与油气勘探战略方向.石油实验地质,2003,25(5):426-431. SUN D J,LUO Q. The fault system characteristics and hydrocarbon exploration strategy in Qaidam Basin. Petroleum Geology and Experiment,2003,25(5):426-431.
[8] 邵绪鹏,管树巍,靳久强,等. 柴西地区英雄岭构造带构造特征差异及控制因素.油气地质与采收率,2018,25(4):67-72. SHAO X P,GUAN S W,JIN J Q,et al. Differences in structural characteristics and control factors of Yingxiong range structural belt in the western Qaidam Basin. Petroleum Geology and Recovery Efficiency,2018,25(4):67-72.
[9] 邵绪鹏,管树巍,靳久强,等. 柴西新生代构造变形时期与强度定量表征.断块油气田,2018,25(2):162-167. SHAO X P,GUAN S W,JIN J Q,et al. Quantitative characterization of Cenozoic structure deformation period and intensity of western Qaidam Basin. Fault-Block Oil and Gas Field,2018, 25(2):162-167.
[10] 邵绪鹏,靳久强,沈亚,等. 柴西地区新生代构造变形时空次序及油气意义.油气地质与采收率,2018,25(1):14-20. SHAO X P,JIN J Q,SHEN Y,et al. Spatial and temporal order of Cenozoic structure deformation in the western Qaidam Basin and its hydrocarbon significance. Petroleum Geology and Recovery Efficiency,2018,25(1):14-20.
[11] 于福生,王彦华,李学良,等. 柴达木盆地狮子沟-油砂山构造带变形特征及成因模拟. 大地构造与成矿学,2011,35(2):207-215. YU F S,WANG Y H,LI X L,et al. Deformation characteristics and genesis simulation of the Shizigou-Youshashan structural belt in Qaidam Basin. Geotectonica et Metallogenia,2011,35(2):207-215.
[12] 王桂宏,李永铁,张敏,等. 柴达木盆地英雄岭地区新生代构造演化动力学特征.地学前缘,2004,11(4):417-423. WANG G H,LI Y T,ZHANG M,et al. Cenozoic dynamics characteristics of tectonic evolution in Yingxiongling(YL)area in Qaidam Basin. Earth Science Frontiers,2004,11(4):417-423.
[13] 赵栋,张霁阳. 柴达木盆地英雄岭构造带构造特征及油气成藏研究进展. 石油地质与工程,2017,31(3):5-9. ZHAO D,ZHANG J Y. Research progress on structural characteristics and hydrocarbon accumulation of the Yingxiongling structural belt in Qaidam Basin. Petroleum Geology and Engineering, 2017,31(3):5-9.
[14] 隋立伟. 柴达木盆地狮子沟-英东构造带断裂控藏作用. 大庆:东北石油大学,2014. SUI L W. The characteristics of accumulation controlled by faults of Shizigou-Yingdong structural belt of Qaidam Basin. Daqing:Northeast Petroleum University,2014.
[15] 庚琪. 柴西断裂系统及控藏机理. 大庆:大庆石油学院,2010. GENG Q. Fault systems and reservoir-controlling mechanisms in western Qaidam Basin. Daqing:Daqing Petroleum Institute, 2010.
[16] 张斌,何媛媛,陈琰,等. 柴达木盆地西部咸化湖相优质烃源岩地球化学特征及成藏意义. 石油学报,2017,38(10):1158-1167. ZHANG B,HE Y Y,CHEN Y,et al. Geochemical characteristics and oil accumulation significance of the high-quality saline lacustrine source rocks in the western Qaidam Basin,NW China. Acta Petrolei Sinica,2017,38(10):1158-1167.
[17] 张斌,何媛媛,陈琰,等. 柴达木盆地西部咸化湖相优质烃源岩形成机理. 石油学报,2018,39(6):674-685. ZHANG B,HE Y Y,CHEN Y,et al. Formation mechanism of excellent saline lacustrine source rocks in the western Qaidam Basin. Acta Petrolei Sinica,2018,39(6):674-685.
[18] 王艳清,刘占国,杨少勇,等. 柴达木盆地英雄岭构造带新近系碎屑岩发育特征及油气勘探方向. 中国石油勘探,2019, 24(1):60-71. WANG Y Q,LIU Z G,YANG S Y,et al. Development characteristics and exploration targets of Neogene clastic rocks in the Yingxiongling structural belt,Qaidam Basin. China Petroleum Exploration,2019,24(1):60-71.
[19] 黄成刚,关新,倪祥龙,等. 柴达木盆地英西地区E32咸化湖盆白云岩储集层特征及发育主控因素. 天然气地球科学, 2017,28(2):219-231. HUANG C G,GUAN X,NI X L,et al. The characteristics and major factors controlling on the E32 dolomite reservoirs in saline lacustrine basin in the Yingxi area of Qaidam Basin. Natural Gas Geoscience,2017,28(2):219-231.
[20] 夏志远,刘占国,李森明,等. 岩盐成因与发育模式:以柴达木盆地英西地区古近系下干柴沟组为例. 石油学报,2017, 38(1):55-66. XIA Z Y,LIU Z G,LI S M,et al. Origin and developing model of rock salt:a case study of Lower Ganchaigou Formation of Paleogene in the west of Yingxiong ridge,Qaidam Basin. Acta Petrolei Sinica,2017,38(1):55-66.
[21] 张永庶,伍坤宇,姜营海,等. 柴达木盆地英西深层碳酸盐岩油气藏地质特征. 天然气地球科学,2018,29(3):358-369. ZHANG Y S,WU K Y,JIANG Y H,et al. Geological characteristics of deep carbonate hydrocarbon-bearing pool in the western Yingxiongling area in Qaidam Basin. Natural Gas Geoscience, 2018,29(3):358-369.
[22] 李延钧,江波,张永庶,等. 柴西狮子沟构造油气成藏期与成藏模式. 新疆石油地质,2008,29(2):176-178. LI Y J,JIANG B,ZHANG Y S,et al. Hydrocarbon accumulation stages and model of Shizigou structural oilfield in western Qaidam Basin. Xinjiang Petroleum Geology,2008,29(2):176-178.
[23] 王琳,赵孟军,孟庆洋,等. 柴达木盆地英西地区中深层油气成藏过程分析. 天然气地球科学,2017,28(12):1846-1854. WANG L,ZHAO M J,MENG Q Y,et al. Analysis of hydrocarbon accumulation process in middle-deep reservoirs of Yingxi area,Qaidam Basin. Natural Gas Geoscience,2017,28(12):1846-1854.
[24] 桂丽黎,刘可禹,柳少波,等. 柴达木盆地西部英东地区油气成藏过程. 地球科学(中国地质大学学报),2015,40(5):890-899. GUI L L,LIU K Y,LIU S B,et al. Hydrocarbon charge history of Yingdong Oilfield,western Qaidam Basin. Earth Science-Journal of China University of Geosciences,2015,40(5):890-899.
[25] 袁剑英,付锁堂,曹正林,等. 柴达木盆地高原复合油气系统多源生烃和复式成藏.岩性油气藏,2011,23(3):7-14. YUAN J Y,FU S T,CAO Z L,et al. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin. Lithologic Reservoirs,2011,23(3):7-14.
[26] 宋光永,夏志远,王艳清,等. 柴西地区渐新统膏盐岩的形成环境与发育模式. 油气地质与采收率,2018,25(5):50-56. SONG G Y,XIA Z Y,WANG Y Q,et al. Forming environment and development modes of the Oligocene lacustrine gypsumsalt rock in western Qaidam Basin. Petroleum Geology and Recovery Efficiency,2018,25(5):50-56.
[27] 隋立伟,方世虎,孙永河,等. 柴达木盆地西部狮子沟-英东构造带构造演化及控藏特征. 地学前缘,2014,21(1):261-270. SUI L W,FANG S H,SUN Y H,et al. The tectonic evolution and accumulation controlling characteristics of Shizigou-Yingdong structural belt of western Qaidam Basin. Earth Science Frontiers,2014,21(1):261-270.
[28] WILKINS S J,GROSS M R. Normal fault growth in layered rocks at Split Mountain,Utah:Influence of mechanical stratigraphy on dip linkage,fault restriction and fault scaling. Journal of Structural Geology,2002,24(9):1413-1429.
[29] WALSH J J,WATTERSON J. Distributions of cumulative displacement and seismic slip on a single normal fault surface. Journal of Structural Geology,1987,9(8):1039-1046.
[30] WALSH J J,WATTERSON J. Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology,1988,10(3):239-247.
[31] WALSH J J,WATTERSON J. Displacement gradients on fault surfaces. Journal of Structural Geology,1989,11(3):307-316.
[32] WALSH J J,WATTERSON J. New methods of fault projection for coalmine planning. Proceedings-Yorkshire Geological Society, 1990,48(2):209-219.
[33] CASTELLTORT S,POCHAT S,DRIESSCHE J V D. Using T-Z plots as a graphical method to infer lithological variations from growth strata. Journal of Structural Geology,2004,26(8):1425-1432.
[34] NEEDHAM D T,YIELDING G,FREEMAN B. Analysis of fault geometry and displacement patterns. Cheminform,1996, 99(1):189-199.
[35] FREEMAN B,BOULT P J,YIELDING G,et al. Using empirical geological rules to reduce structural uncertainty in seismic interpretation of faults. Journal of Structural Geology,2010,32(11):1668-1676.
[36] CARTWRIGHT J A,TRUDGILL B D,MANSFIELD C S. Fault growth by segment linkage:an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 1995,17(9):1319-1326.
[37] RYAN L,MAGEE C,JACKSON C A L. The kinematics of normal faults in the Ceduna Subbasin,offshore southern Australia:Implications for hydrocarbon trapping in a frontier basin. AAPG Bulletin,2017,101(3):321-341.
[38] KIM Y S,SANDERSON D J. The relationship between displacement and length of faults:a review. Earth-Science Reviews, 2005,68(3):317-334.
[39] 王海学,李明辉,沈忠山,等. 断层分段生长定量判别标准的建立及其地质意义:以松辽盆地杏北开发区萨尔图油层为例.地质论评,2014,60(6):1259-1264. WANG H X,LI M H,SHEN Z S,et al. The establishment and geological significance of quantitative discrimination criterion of fault segmentation growth:an example from Saertu reservoir in Xingbei development area of Songliao Basin. Geological Review, 2014,60(6):1259-1264.
[40] 付晓飞,孙兵,王海学,等. 断层分段生长定量表征及在油气成藏研究中的应用. 中国矿业大学学报,2015,44(2):271-281. FU X F,SUN B,WANG H X,et al. Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research. Journal of China University of Mining and Technology,2015,44(2):271-281.
[41] THORSEN C E. Age of growth faulting in Southeast Louisiana. Transactions,Gulf Coast Association of Geological Societies, 1963,13(2):103-110.
[42] MURAOKA H,KAMATA H. Displacement distribution along minor fault traces. Journal of Structural Geology,1983,5(5):483-495.
[43] BISCHKE. Interpreting sedimentary growth structures from well log and seismic data(with examples). AAPG Bulletin,1994, 78(6):873-892.
[44] 张焱林,刘晓峰,郭忻. 高分辨率断层落差图的基本原理及其应用. 断块油气田,2010,17(2):181-184. ZHANG Y L,LIU X F,GUO X. Principles and application of high-resolution fault throw plot. Fault-Block Oil and Gas Field, 2010,17(2):181-184.
[45] 卢异,王书香,陈松,等. 一种断裂活动强度计算方法及其应用. 天然气地球科学,2010,21(4):612-616. LU Y,WANG S X,CHEN S,et al. Computing method about intensity of fault activity and its application. Natural Gas Geoscience, 2010,21(4):612-616.
[46] 张津宁,张金功,杨乾政,等. 应用断点移动法分析断层活动性. 地质科技情报,2016,35(1):38-43. ZHANG J N,ZHANG J G,YANG Q Z,et al. Fault activity analysis by breakpoint moving method. Geological Science and Technology Information,2016,35(1):38-43.
[47] 张津宁,张金功,吴春燕,等. 柴达木盆地阿拉尔断层几何学、运动学及其演化. 大地构造与成矿学,2017,41(3):446-454. ZHANG J N,ZHANG J G,WU C Y,et al. Geometry,kinematics and evolution of Alar fault in Qaidam Basin. Geotectonica et Metallogenia,2017,41(3):446-454.
[48] 张伟忠,查明,韩宏伟,等. 东营凹陷边界断层活动性与沉积演化耦合关系的量化表征. 中国石油大学学报(自然科学版),2017,41(4):18-26. ZHANG W Z,ZHA M,HAN H W,et al. Quantitative research of coupling relationship between boundary fault activity and sedimentary evolution in Dongying Depression. Journal of China University of Petroleum,2017,41(4):18-26.
[49] 康洪全,李明刚,贾怀存,等. 大型控盆边界正断层活动性评价方法及应用. 断块油气田,2017,24(3):307-310. KANG H Q,LI M G,JIA H C,et al. Evaluation method of large boundary normal fault activity and its application. Fault-Bock Oil and Gas Field,2017,24(3):307-310.
[1] 覃阳亮, 何幼斌, 蔡俊, 李华, 张灿, 刘建宁. 东非海岸Davie构造带的构造演化特征及其成因机制[J]. 岩性油气藏, 2021, 33(2): 104-115.
[2] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[3] 朱珍君, 黄光明, 邱津, 刘康宁, 李琦, 胡俊杰. 哈萨克斯坦斋桑盆地构造特征及其对油气成藏的影响[J]. 岩性油气藏, 2020, 32(4): 23-35.
[4] 隋立伟. 塔南凹陷古地貌特征对沉积体系和油气分布的影响[J]. 岩性油气藏, 2020, 32(4): 48-58.
[5] 郑庆华, 尤继元. 黄骅坳陷王官屯构造带白垩系火山岩油气成藏特征[J]. 岩性油气藏, 2019, 31(5): 44-51.
[6] 唐建云, 张刚, 史政, 章星, 陈玉宝. 鄂尔多斯盆地丰富川地区延长组流体包裹体特征及油气成藏期次[J]. 岩性油气藏, 2019, 31(3): 20-26.
[7] 洪亮, 陈彬滔, 刘雄志, 惠学智, 房乃珍, 苏玉平. Muglad盆地Kaikang槽西斜坡沉积演化及其油气地质意义[J]. 岩性油气藏, 2019, 31(2): 8-15.
[8] 白晓寅, 韩长春, 贺永红, 任来义, 马芳侠, 陈治军, 刘护创. 银额盆地哈日凹陷火成岩发育特征及其成藏作用[J]. 岩性油气藏, 2018, 30(6): 18-26.
[9] 叶博, 梁晓伟, 宋娟, 曹润荣, 毛振华, 郝炳英. 鄂尔多斯盆地演武地区侏罗系延安组油藏成藏特征[J]. 岩性油气藏, 2018, 30(4): 65-73.
[10] 王鹏, 沈忠民, 何崇康, 陈刚, 潘树林, 王君泽. 川南地区须家河组天然气地球化学特征及成藏过程[J]. 岩性油气藏, 2017, 29(5): 19-27.
[11] 肖阳, 张少华, 魏岩, 杨明慧, 陈玉婷, 潘娟. 二连盆地赛汉塔拉凹陷边界断裂构造特征及其控藏作用[J]. 岩性油气藏, 2017, 29(2): 44-50.
[12] 康海涛,王宏语,樊太亮,赵家强,王凯杰,杨 超 . 南堡凹陷高柳地区沙三段构造-层序地层特征[J]. 岩性油气藏, 2015, 27(6): 30-37.
[13] 陈 杰,杜 洋,彭 湃,黄贺雄,童明胜,熊 舒. 非稳态油藏理论及其在伊朗 A 油田的应用[J]. 岩性油气藏, 2015, 27(6): 125-131.
[14] 吴海波,李军辉,刘 赫. 海拉尔盆地乌尔逊—贝尔凹陷层序构成样式及油气成藏模式[J]. 岩性油气藏, 2015, 27(5): 155-160.
[15] 江 涛,李慧勇,李新琦,许 鹏,胡安文. 渤西沙垒田凸起走滑断裂背景下油气成藏特征[J]. 岩性油气藏, 2015, 27(5): 172-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[3] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[4] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[5] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[6] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[7] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[8] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .
[9] 王大兴,于波,张盟勃,宋琛. 地震叠前分析技术在子洲气田的研究与应用[J]. 岩性油气藏, 2008, 20(1): 95 -100 .
[10] 罗志立,张景廉,石兰亭. “塔里木—扬子古大陆”重建对无机成因油气的作用[J]. 岩性油气藏, 2008, 20(1): 124 -128 .