岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 104–115.doi: 10.12108/yxyqc.20210211

• 油气地质 • 上一篇    下一篇

东非海岸Davie构造带的构造演化特征及其成因机制

覃阳亮1,2, 何幼斌1,2, 蔡俊1,2, 李华1,2, 张灿3, 刘建宁1,2   

  1. 1. 长江大学 地球科学学院, 武汉 430100;
    2. 长江大学 油气资源与勘探技术教育部重点实验室, 武汉 430100;
    3. 河北枣强中学, 河北 衡水 053100
  • 收稿日期:2020-07-01 修回日期:2020-09-18 出版日期:2021-04-01 发布日期:2021-03-31
  • 通讯作者: 何幼斌(1964—),男,博士,教授,主要从事沉积学和储层地质研究工作。Email:heyb122@163.com。 E-mail:heyb122@163.com
  • 作者简介:覃阳亮(1996—),男,长江大学在读硕士研究生,研究方向为地质工程。地址:(430100)湖北省武汉市蔡甸区大学路111号。Email:15280395193@163.com
  • 基金资助:
    国家自然科学基金项目“重力驱动深水褶皱冲断带分带差异变形机理研究”(编号:42002150)和国家科技重大专项“非洲重点区油气勘探潜力综合评价”子课题“东非海岸重点盆地勘探潜力综合评价”(编号:2017ZX05032-002-003)联合资助

Tectonic evolution and formation mechanism of Davie Fracture Zone in East Africa coast

QIN Yangliang1,2, HE Youbin1,2, CAI Jun1,2, LI Hua1,2, ZHANG Can3, LIU Jianning1,2   

  1. 1. College of Geoscience, Yangtze University, Wuhan 430100, China;
    2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China;
    3. Hebei Zaoqiang Middle School, Hengshui 053100, Hebei, China
  • Received:2020-07-01 Revised:2020-09-18 Online:2021-04-01 Published:2021-03-31

摘要: 以东非海岸Davie构造带为研究对象,通过东非海岸地形、自由空气重力及磁异常等资料的综合分析,确定了Davie构造带的南北展布范围;通过对地震资料的精细解释,明确了Davie构造带不同部位的构造特征;利用层拉平、生长指数及平衡剖面等方法,结合区域动力学分析,对Davie构造带不同时期的构造特征进行了详细的解剖。结果表明:①在平面上,Davie构造带南北展布范围为4°S~22°S;剖面上,构造特征具有南北分段的特点,南段可见构造脊,伴随典型的底劈构造,北段可见正反转构造。②受东非海岸地区板块差异活动的影响,Davie构造带在不同时期具有不同特点,在晚石炭世—早侏罗世,主要受拉张应力影响,在层拉平后的地震剖面中可见典型的地堑结构;在中侏罗世—早白垩世,受马达加斯加向南漂移影响转变为走滑性质;晚白垩世以来,进入被动大陆边缘阶段,Davie东断层基本停止活动,而Davie西断层仍持续活动。③ Davie构造带发育演化具有继承性,其南北构造差异是由于热传导与板块应力转变共同作用产生的结果,由此建立了“南段构造脊持续活动、北段扩张后局部挤压”的构造变形模式。该研究成果为Davie构造带油气地质研究奠定了理论基础。

关键词: 分段差异变形, 构造演化, 成因机制, Davie构造带, 东非海岸

Abstract: The north-south-trend length of Davie Fracture Zone along the East African coast was comprehensive analyzed based on East African coast topography,free air gravity anomalies and magnetic anomalies. The structural characteristics of different parts of Davie Fracture Zone were clarified through fine interpretation of seismic data. The structural characteristics of the Davie Fracture Zone in different periods were analyzed by means of layer flattening,growth index and balanced profile,combined with regional dynamic analysis. The results show that the horizontal distribution of Davie Fracture Zone is between 4°S and 22°S from north to south. The vertical struture has different characteristics of north-south segmentation,and structural ridges can be seen in the southern section,accompanied by typical undercut structures,and in the northern section,positive inverted structures can be seen. Affected by the differential activities of the plates in the East African coast,the Davie Fracture Zone has different characteristics in different periods. In Late Carboniferous to Early Jurassic,the Davie Fracture Zone was mainly affected by tensile stress,and typical graben structures can be seen in the flattened seismic section. During the Middle Jurassic-Early Cretaceous,it turned into strike-slip property due to the southward drift of Madagascar. Since the Late Cretaceous,it entered the passive continental margin stage,and the Davie East Fault basically ceased its activity,while the Davie West Fault continued to be active. The development and evolution of the Davie Fracture Zone is inherited,and its north-south structural difference is the result of the combined effect of heat conduction and plate stress transition. Thus,a tectonic deformation model of "continuous activity of the southern structural ridge and local compression after the northern expansion" was established. The above conclusions could make a contribution for the study of oil and gas geology of the Davie Fracture Zone.

Key words: segmented differential deformation, tectonic evolution, formation mechanism, Davie Fracture Zone, East African coast

中图分类号: 

  • TE121.2
[1] SMITH A G, HALLAM A. The fit of the southern continents. Nature, 1970, 225(5228):139-144.
[2] EMERY K O. Continental margins:classification and petroleum prospects. AAPG Bulletin, 1980, 64(3):297-315.
[3] CRUCIANI F, BARCHI M R. The Lamu Basin deepwater foldand-thrust belt:an example of a margin-scale, gravity-driven thrust belt along the continental passive margin of East Africa. Tectonics, 2016, 35(3):491-510.
[4] 孙涛, 杨永才, 王建新.东非坦桑尼亚盆地深水区天然气地球化学特征与成因.海洋石油, 2020, 40(1):1-5. SUN T, YANG YC, WANG J X. Geochemical characteristics and genesis of natural gas in offshore area of Tanzania Basin, East Africa. Offshore Oil, 2020, 4(1):1-5.
[5] 崔哿, 金爱民, 邬长武, 等.东非海岸构造演化及其对南、北主要富油气盆地控藏作用对比.海洋地质与第四纪地质, 2020, 40(1):104-113. CUI W, JIN A M, WU C W, et al. Tectonic evolution of East Africa coast and comparison of hydrocarbon accumulation conditions in the north and south petroliferous basins. Marine Geology & Quaternary Geology, 2020, 40(1):104-113.
[6] 张功成, 屈红军, 张凤廉, 等.全球深水油气重大新发现及启示.石油学报, 2019, 40(1):1-34. ZHANG G C, QU H J, ZHANG F L, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment. Acta Petrolei Sinica, 2019, 40(1):1-34.
[7] HEIRTZLER J R, BURROUGHS R H. Madagascar's paleo position:New data from the Mozambique Channel. Science, 1971, 174(4008):488-490.
[8] SCRUTTON R A. Davie Fracture Zone and the movement of Madagascar. Earth and Planetary Science Letters, 1978, 39(1):84-88.
[9] COFFIN M F, RABINOWITZ P D. Reconstruction of Madagascar and Africa:Evidence from the Davie Fracture Zone and Western Somali Basin. Journal of Geophysical Research:Solid Earth, 1987, 92(B9):9385-9406.
[10] MASCLE J, MOUGENOT D, BLAREZ E, et al. African transform continental margins:Examples from Guinea, the Ivory Coast and Mozambique. Geological Journal, 1987, 22(Suppl 2):537-561.
[11] BASSIAS Y. Petrological and geochemical investigation of rocks from the Davie Fracture Zone (Mozambique Channel) and some tectonic implications. Journal of African Earth Sciences(and the Middle East), 1992, 15(3/4):321-339.
[12] BIRD D. Shear margins continent-ocean transform and fracture zone boundaries. The Leading Edge, 2001, 20(2):150-159.
[13] NAIRN A E M, LERCHE I, ILIFFE J E. Geology, basin analysis, and hydrocarbon potential of Mozambique and the Mozambique Channel. Earth Science Reviews, 1991, 30(1/2):81-123.
[14] COFFIN M F, RABINOWITZ P D. The Mesozoic East African and Madagascan conjugate continental margins:Stratigraphy and tectonics:chapter 12:African and Mediterranean Margins. 1992.
[15] MAHANjANE E S. The Davie Fracture Zone and adjacent basins in the offshore Mozambique margin:a new insight for the hydrocarbon potential. Marine and Petroleum Geology, 2014, 57:561-571.
[16] COURGEON S, BACHèLERY P, JOUET G, et al. The offshore east African rift system:New insights from the Sakalaves seamounts(Davie Ridge, SW Indian Ocean). Terra Nova, 2018, 30(5):380-388.
[17] 朱珍君, 黄光明, 邱津, 等.哈萨克斯坦斋桑盆地构造特征及其对油气成藏的影响.岩性油气藏, 2020, 32(4):23-35. ZHU Z J, HUANG G M, QIU J, et al. Structural characteristics and its impacts on hydrocarbon accumulation in Zaysan Basin, Kazakhstan. Lithologic Reservoirs, 2020, 32(4):23-35.
[18] 张亚, 陈双玲, 张晓丽, 等.四川盆地茅口组岩溶古地貌刻画及油气勘探意义.岩性油气藏, 2020, 32(3):44-55. ZHANG Y, CHEN S l, ZHANG X L, et al. Restoration of paleokarst geomorphology of Lower Permian Maokou Formation and its petroleum exploration implication in Sichuan Basin. Lithologic Reservoirs, 2020, 32(3):44-55.
[19] 隋立伟. 塔南凹陷古地貌特征对沉积体系和油气分布的影响.岩性油气藏, 2020, 32(4):48-58. SUI L W. Influence of paleogeomorphic characteristics on sedimentary system and hydrocarbon distribution in Tanan Depression. Lithologic Reservoirs, 2020, 32(4):48-58.
[20] 张璐, 何峰, 陈晓智, 等.基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征. 岩性油气藏, 2020, 32(2):108-114. ZHANG L, HE F, CHEN X Z, et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control. Lithologic Reservoirs, 2020, 32(2):108-114.
[21] 王德英, 于娅, 张藜, 等.渤海海域石臼坨凸起大型岩性油气藏成藏关键要素.岩性油气藏, 2020, 32(1):1-10. WANG D Y, YU Y, ZHANG L, et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift, Bohai Sea. Lithologic Reservoirs, 2020, 32(1):1-10.
[22] 陈宣华, 邵兆刚, 熊小松, 等.祁连造山带断裂构造体系、深部结构与构造演化.中国地质, 2019, 46(5):995-1020. CHEN X H, SHAO Z G, XIONG X S, et al. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, northwest China. Geology in China, 2019, 46(5):995-1020.
[23] 裴军令, 仝亚博, 蒲宗文, 等.青藏高原东南缘新生代地壳运动的转换.地球学报, 2019, 40(1):106-116. PEI J L, TONG Y B, PU Z W, et al. The Cenozoic multistage transform of crustal movement pattern of the southeastern edge of the Tibetan Plateau. Acta Geoscientica Sinica, 2019, 40(1):106-116.
[24] 赵静, 刘杰, 任金卫, 等.汶川、芦山地震前龙门山断裂带地壳形变特征对比分析.地球学报, 2019, 40(1):186-198. ZHAO J, LIU J, REN J W, et al. A contrastive analysis of crustal deformation characteristics along the Longmen Shan Fault Zone before the Ms 8.0 Wenchuan Earthquake and the Ms 7.0 Lushan Earthquake. Acta Geoscientica Sinica, 2019, 40(1):186-198.
[25] BURKE K, MACGREGOR D S, CAMERON N R. Africa's petroleum systems:four tectonic ‘Aces’ in the past 600 million years. Special Publications of Geological Society of London,2003, 207(1):21-60.
[26] CATUNEANU O, WOPFNER H, ERIKSSON P G, et al. The Karoo basins of south-central Africa. Journal of African Earth Sciences, 2005, 43(1-3):211-253.
[27] ROBERTS E M, O' CONNOR P M, STEVENS N J, et al. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania:New insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa. Journal of African Earth Sciences, 2010, 57(3):179-212.
[28] MAHANjANE E S, FRANKE D, LUTZ R, et al. Maturity and petroleum systems modelling in the offshore Zambezi Delta Depression and Angoche Basin, northern Mozambique. Journal of Petroleum Geology, 2014, 37(4):329-348.
[29] SCOTESE C R. Jurassic and Cretaceous plate tectonic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 87(1-4):493-501.
[30] SCOTESE C R, GAHAGAN L M, LARSON R L. Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics, 1988, 155(1-4):27-48.
[31] 陈宇航, 姚根顺, 唐鹏程, 等.东非凯瑞巴斯凹陷多期构造变形及对油气聚集的控制作用. 大地构造与成矿学, 2016, 40(3):491-502. CHEN Y H, YAO G S, TANG P C, et al. Multistage tectonic deformation and its control on hydrocarbon accumulation in the Kerimbas Basin, East Africa. Geotectonica et Metallogenia, 2016, 40(3):491-502.
[32] 戴盈磊, 万永革, 梁永朵, 等.基于震源机制解资料的辽宁地区现今构造应力场.地震, 2020, 40(3):112-130. DAI Y L, WAN Y G, LIANG Y D, et al. Current tectonic stress field in Liaoning based on focal mechanism solution data. Earthquake, 2020, 40(3):112-130.
[33] 杨振宇, JEAN BESSE, 孙知明, 等.印度支那地块第三纪构造滑移与青藏高原岩石圈构造演化.地质学报, 1998, 72(2):3-5. YANG Z Y, BESSE J, SUN Z M, et al. Tertiary squeeze out of the Indo-China block and lithospheric evolution of the QinghaiTibetan Plateau. Acta Geologica Sinica, 1998, 72(2):3-5.
[34] MAESTRO-GONZáLEZ A, BáRCENAS P, VáZQUEZ J T, et al. The role of basement inheritance faults in the recent fracture system of the inner shelf around Alboran Island, Western Mediterranean. Geo-Marine Letters, 2008, 28(1):53-64.
[35] 童亨茂, 聂金英, 孟令箭, 等.基底先存构造对裂陷盆地断层形成和演化的控制作用规律.地学前缘, 2009, 16(4):97-104. TONG H M, NIE J Y, MENG L J, et al. The law basement preexisting fabric controlling fault formation and evolution in rift basin. Earth Science Frontiers, 2009, 16(4):97-104.
[36] WILSON J T. A new class of faults and their bearing on continental drift. Nature, 1965, 207(4995):343-347.
[37] GERYA T. Origin and models of oceanic transform faults. Tectonophysics, 2012, 522:34-54.
[38] TODD B J, KEEN C E. Temperature effects and their geological consequences at transform margins. Canadian Journal of Earth Sciences, 1989, 26(12):2591-2603.
[39] VAGNES E. Uplift at thermo-mechanically coupled ocean-continent transforms:modeled at the Senja Fracture Zone, southwestern Barents Sea. Geo-Marine Letters, 1997, 17(1):100-109.
[40] BASILE C, MASCLE J, POPOFF M, et al. The Ivory CoastGhana transform margin:a marginal ridge structure deduced from seismic data. Tectonophysics, 1993, 222(1):1-19.
[41] LORENZO J M, WESSEL P. Flexure across a continent-ocean fracture zone:the northern Falkland/Malvinas Plateau, South Atlantic. Geo-Marine Letters, 1997, 17(1):110-118.
[42] PARSIEGLA N, STANKIEWICZ J, GOHL K, et al. Southern African continental margin:Dynamic processes of a transform margin. Geochemistry, Geophysics, Geosystems, 2009, 10(3):3007.
[1] 卢恩俊, 柳少波, 于志超, 鲁雪松, 成定树. 柴达木盆地英雄岭南带断裂活动特征及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 161-174.
[2] 隋立伟. 塔南凹陷古地貌特征对沉积体系和油气分布的影响[J]. 岩性油气藏, 2020, 32(4): 48-58.
[3] 康海涛,王宏语,樊太亮,赵家强,王凯杰,杨 超 . 南堡凹陷高柳地区沙三段构造-层序地层特征[J]. 岩性油气藏, 2015, 27(6): 30-37.
[4] 陈 杰,杜 洋,彭 湃,黄贺雄,童明胜,熊 舒. 非稳态油藏理论及其在伊朗 A 油田的应用[J]. 岩性油气藏, 2015, 27(6): 125-131.
[5] 王 维,张英波,杨香华,王清斌,朱红涛. 黄河口凹陷 BZ-A-1 井区沙河街组“甜点”特征及成因机制[J]. 岩性油气藏, 2015, 27(5): 45-52.
[6] 赵宏波,何昕睿,王筱烨,谷道会. 潮水盆地构造特征[J]. 岩性油气藏, 2013, 25(2): 36-40.
[7] 张莹. 伸展褶皱及其对油气聚集的控制作用———以海拉尔盆地贝中次凹为例[J]. 岩性油气藏, 2012, 24(2): 16-20.
[8] 郭飞飞,康建云,孙建峰,陆俊泽,王修平. 江汉盆地构造演化与海相地层油气成藏模式[J]. 岩性油气藏, 2010, 22(1): 23-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 张昌民, 尹太举, 李少华, 熊福均. 基准面旋回对河道砂体几何形态的控制作用———以枣园油田孔一段枣Ⅱ—Ⅲ油组为例[J]. 岩性油气藏, 2007, 19(4): 9 -12 .