岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 104115.doi: 10.12108/yxyqc.20210211
覃阳亮1,2, 何幼斌1,2, 蔡俊1,2, 李华1,2, 张灿3, 刘建宁1,2
QIN Yangliang1,2, HE Youbin1,2, CAI Jun1,2, LI Hua1,2, ZHANG Can3, LIU Jianning1,2
摘要: 以东非海岸Davie构造带为研究对象,通过东非海岸地形、自由空气重力及磁异常等资料的综合分析,确定了Davie构造带的南北展布范围;通过对地震资料的精细解释,明确了Davie构造带不同部位的构造特征;利用层拉平、生长指数及平衡剖面等方法,结合区域动力学分析,对Davie构造带不同时期的构造特征进行了详细的解剖。结果表明:①在平面上,Davie构造带南北展布范围为4°S~22°S;剖面上,构造特征具有南北分段的特点,南段可见构造脊,伴随典型的底劈构造,北段可见正反转构造。②受东非海岸地区板块差异活动的影响,Davie构造带在不同时期具有不同特点,在晚石炭世—早侏罗世,主要受拉张应力影响,在层拉平后的地震剖面中可见典型的地堑结构;在中侏罗世—早白垩世,受马达加斯加向南漂移影响转变为走滑性质;晚白垩世以来,进入被动大陆边缘阶段,Davie东断层基本停止活动,而Davie西断层仍持续活动。③ Davie构造带发育演化具有继承性,其南北构造差异是由于热传导与板块应力转变共同作用产生的结果,由此建立了“南段构造脊持续活动、北段扩张后局部挤压”的构造变形模式。该研究成果为Davie构造带油气地质研究奠定了理论基础。
中图分类号:
[1] SMITH A G, HALLAM A. The fit of the southern continents. Nature, 1970, 225(5228):139-144. [2] EMERY K O. Continental margins:classification and petroleum prospects. AAPG Bulletin, 1980, 64(3):297-315. [3] CRUCIANI F, BARCHI M R. The Lamu Basin deepwater foldand-thrust belt:an example of a margin-scale, gravity-driven thrust belt along the continental passive margin of East Africa. Tectonics, 2016, 35(3):491-510. [4] 孙涛, 杨永才, 王建新.东非坦桑尼亚盆地深水区天然气地球化学特征与成因.海洋石油, 2020, 40(1):1-5. SUN T, YANG YC, WANG J X. Geochemical characteristics and genesis of natural gas in offshore area of Tanzania Basin, East Africa. Offshore Oil, 2020, 4(1):1-5. [5] 崔哿, 金爱民, 邬长武, 等.东非海岸构造演化及其对南、北主要富油气盆地控藏作用对比.海洋地质与第四纪地质, 2020, 40(1):104-113. CUI W, JIN A M, WU C W, et al. Tectonic evolution of East Africa coast and comparison of hydrocarbon accumulation conditions in the north and south petroliferous basins. Marine Geology & Quaternary Geology, 2020, 40(1):104-113. [6] 张功成, 屈红军, 张凤廉, 等.全球深水油气重大新发现及启示.石油学报, 2019, 40(1):1-34. ZHANG G C, QU H J, ZHANG F L, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment. Acta Petrolei Sinica, 2019, 40(1):1-34. [7] HEIRTZLER J R, BURROUGHS R H. Madagascar's paleo position:New data from the Mozambique Channel. Science, 1971, 174(4008):488-490. [8] SCRUTTON R A. Davie Fracture Zone and the movement of Madagascar. Earth and Planetary Science Letters, 1978, 39(1):84-88. [9] COFFIN M F, RABINOWITZ P D. Reconstruction of Madagascar and Africa:Evidence from the Davie Fracture Zone and Western Somali Basin. Journal of Geophysical Research:Solid Earth, 1987, 92(B9):9385-9406. [10] MASCLE J, MOUGENOT D, BLAREZ E, et al. African transform continental margins:Examples from Guinea, the Ivory Coast and Mozambique. Geological Journal, 1987, 22(Suppl 2):537-561. [11] BASSIAS Y. Petrological and geochemical investigation of rocks from the Davie Fracture Zone (Mozambique Channel) and some tectonic implications. Journal of African Earth Sciences(and the Middle East), 1992, 15(3/4):321-339. [12] BIRD D. Shear margins continent-ocean transform and fracture zone boundaries. The Leading Edge, 2001, 20(2):150-159. [13] NAIRN A E M, LERCHE I, ILIFFE J E. Geology, basin analysis, and hydrocarbon potential of Mozambique and the Mozambique Channel. Earth Science Reviews, 1991, 30(1/2):81-123. [14] COFFIN M F, RABINOWITZ P D. The Mesozoic East African and Madagascan conjugate continental margins:Stratigraphy and tectonics:chapter 12:African and Mediterranean Margins. 1992. [15] MAHANjANE E S. The Davie Fracture Zone and adjacent basins in the offshore Mozambique margin:a new insight for the hydrocarbon potential. Marine and Petroleum Geology, 2014, 57:561-571. [16] COURGEON S, BACHèLERY P, JOUET G, et al. The offshore east African rift system:New insights from the Sakalaves seamounts(Davie Ridge, SW Indian Ocean). Terra Nova, 2018, 30(5):380-388. [17] 朱珍君, 黄光明, 邱津, 等.哈萨克斯坦斋桑盆地构造特征及其对油气成藏的影响.岩性油气藏, 2020, 32(4):23-35. ZHU Z J, HUANG G M, QIU J, et al. Structural characteristics and its impacts on hydrocarbon accumulation in Zaysan Basin, Kazakhstan. Lithologic Reservoirs, 2020, 32(4):23-35. [18] 张亚, 陈双玲, 张晓丽, 等.四川盆地茅口组岩溶古地貌刻画及油气勘探意义.岩性油气藏, 2020, 32(3):44-55. ZHANG Y, CHEN S l, ZHANG X L, et al. Restoration of paleokarst geomorphology of Lower Permian Maokou Formation and its petroleum exploration implication in Sichuan Basin. Lithologic Reservoirs, 2020, 32(3):44-55. [19] 隋立伟. 塔南凹陷古地貌特征对沉积体系和油气分布的影响.岩性油气藏, 2020, 32(4):48-58. SUI L W. Influence of paleogeomorphic characteristics on sedimentary system and hydrocarbon distribution in Tanan Depression. Lithologic Reservoirs, 2020, 32(4):48-58. [20] 张璐, 何峰, 陈晓智, 等.基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征. 岩性油气藏, 2020, 32(2):108-114. ZHANG L, HE F, CHEN X Z, et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control. Lithologic Reservoirs, 2020, 32(2):108-114. [21] 王德英, 于娅, 张藜, 等.渤海海域石臼坨凸起大型岩性油气藏成藏关键要素.岩性油气藏, 2020, 32(1):1-10. WANG D Y, YU Y, ZHANG L, et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift, Bohai Sea. Lithologic Reservoirs, 2020, 32(1):1-10. [22] 陈宣华, 邵兆刚, 熊小松, 等.祁连造山带断裂构造体系、深部结构与构造演化.中国地质, 2019, 46(5):995-1020. CHEN X H, SHAO Z G, XIONG X S, et al. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, northwest China. Geology in China, 2019, 46(5):995-1020. [23] 裴军令, 仝亚博, 蒲宗文, 等.青藏高原东南缘新生代地壳运动的转换.地球学报, 2019, 40(1):106-116. PEI J L, TONG Y B, PU Z W, et al. The Cenozoic multistage transform of crustal movement pattern of the southeastern edge of the Tibetan Plateau. Acta Geoscientica Sinica, 2019, 40(1):106-116. [24] 赵静, 刘杰, 任金卫, 等.汶川、芦山地震前龙门山断裂带地壳形变特征对比分析.地球学报, 2019, 40(1):186-198. ZHAO J, LIU J, REN J W, et al. A contrastive analysis of crustal deformation characteristics along the Longmen Shan Fault Zone before the Ms 8.0 Wenchuan Earthquake and the Ms 7.0 Lushan Earthquake. Acta Geoscientica Sinica, 2019, 40(1):186-198. [25] BURKE K, MACGREGOR D S, CAMERON N R. Africa's petroleum systems:four tectonic ‘Aces’ in the past 600 million years. Special Publications of Geological Society of London,2003, 207(1):21-60. [26] CATUNEANU O, WOPFNER H, ERIKSSON P G, et al. The Karoo basins of south-central Africa. Journal of African Earth Sciences, 2005, 43(1-3):211-253. [27] ROBERTS E M, O' CONNOR P M, STEVENS N J, et al. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania:New insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa. Journal of African Earth Sciences, 2010, 57(3):179-212. [28] MAHANjANE E S, FRANKE D, LUTZ R, et al. Maturity and petroleum systems modelling in the offshore Zambezi Delta Depression and Angoche Basin, northern Mozambique. Journal of Petroleum Geology, 2014, 37(4):329-348. [29] SCOTESE C R. Jurassic and Cretaceous plate tectonic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 87(1-4):493-501. [30] SCOTESE C R, GAHAGAN L M, LARSON R L. Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics, 1988, 155(1-4):27-48. [31] 陈宇航, 姚根顺, 唐鹏程, 等.东非凯瑞巴斯凹陷多期构造变形及对油气聚集的控制作用. 大地构造与成矿学, 2016, 40(3):491-502. CHEN Y H, YAO G S, TANG P C, et al. Multistage tectonic deformation and its control on hydrocarbon accumulation in the Kerimbas Basin, East Africa. Geotectonica et Metallogenia, 2016, 40(3):491-502. [32] 戴盈磊, 万永革, 梁永朵, 等.基于震源机制解资料的辽宁地区现今构造应力场.地震, 2020, 40(3):112-130. DAI Y L, WAN Y G, LIANG Y D, et al. Current tectonic stress field in Liaoning based on focal mechanism solution data. Earthquake, 2020, 40(3):112-130. [33] 杨振宇, JEAN BESSE, 孙知明, 等.印度支那地块第三纪构造滑移与青藏高原岩石圈构造演化.地质学报, 1998, 72(2):3-5. YANG Z Y, BESSE J, SUN Z M, et al. Tertiary squeeze out of the Indo-China block and lithospheric evolution of the QinghaiTibetan Plateau. Acta Geologica Sinica, 1998, 72(2):3-5. [34] MAESTRO-GONZáLEZ A, BáRCENAS P, VáZQUEZ J T, et al. The role of basement inheritance faults in the recent fracture system of the inner shelf around Alboran Island, Western Mediterranean. Geo-Marine Letters, 2008, 28(1):53-64. [35] 童亨茂, 聂金英, 孟令箭, 等.基底先存构造对裂陷盆地断层形成和演化的控制作用规律.地学前缘, 2009, 16(4):97-104. TONG H M, NIE J Y, MENG L J, et al. The law basement preexisting fabric controlling fault formation and evolution in rift basin. Earth Science Frontiers, 2009, 16(4):97-104. [36] WILSON J T. A new class of faults and their bearing on continental drift. Nature, 1965, 207(4995):343-347. [37] GERYA T. Origin and models of oceanic transform faults. Tectonophysics, 2012, 522:34-54. [38] TODD B J, KEEN C E. Temperature effects and their geological consequences at transform margins. Canadian Journal of Earth Sciences, 1989, 26(12):2591-2603. [39] VAGNES E. Uplift at thermo-mechanically coupled ocean-continent transforms:modeled at the Senja Fracture Zone, southwestern Barents Sea. Geo-Marine Letters, 1997, 17(1):100-109. [40] BASILE C, MASCLE J, POPOFF M, et al. The Ivory CoastGhana transform margin:a marginal ridge structure deduced from seismic data. Tectonophysics, 1993, 222(1):1-19. [41] LORENZO J M, WESSEL P. Flexure across a continent-ocean fracture zone:the northern Falkland/Malvinas Plateau, South Atlantic. Geo-Marine Letters, 1997, 17(1):110-118. [42] PARSIEGLA N, STANKIEWICZ J, GOHL K, et al. Southern African continental margin:Dynamic processes of a transform margin. Geochemistry, Geophysics, Geosystems, 2009, 10(3):3007. |
[1] | 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136. |
[2] | 贺勇, 邱欣卫, 雷永昌, 谢世文, 肖张波, 李敏. 珠江口盆地陆丰13东洼新生代构造演化与油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 74-82. |
[3] | 文志刚, 罗雨舒, 刘江艳, 赵春雨, 李士祥, 田伟超, 樊云鹏, 高和婷. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏, 2022, 34(6): 47-59. |
[4] | 余海波. 东濮凹陷构造特征及古生界有利勘探区带评价[J]. 岩性油气藏, 2022, 34(6): 72-79. |
[5] | 阴钰毅, 姚志纯, 郭小波, 王乐立, 陈思谦, 余小雷, 岑向阳. 鄂尔多斯盆地西缘二叠系隐伏构造特征及勘探意义[J]. 岩性油气藏, 2022, 34(4): 79-88. |
[6] | 张俊龙, 何幼斌, 梁建设, 邱春光, 吴东胜, 李华, 童乐. 东非海岸盆地下侏罗统沉积特征及其控源作用[J]. 岩性油气藏, 2022, 34(4): 128-140. |
[7] | 杜江民, 龙鹏宇, 秦莹民, 张桐, 马宏宇, 盛军. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏, 2021, 33(5): 1-10. |
[8] | 卢恩俊, 柳少波, 于志超, 鲁雪松, 成定树. 柴达木盆地英雄岭南带断裂活动特征及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 161-174. |
[9] | 隋立伟. 塔南凹陷古地貌特征对沉积体系和油气分布的影响[J]. 岩性油气藏, 2020, 32(4): 48-58. |
[10] | 康海涛,王宏语,樊太亮,赵家强,王凯杰,杨 超 . 南堡凹陷高柳地区沙三段构造-层序地层特征[J]. 岩性油气藏, 2015, 27(6): 30-37. |
[11] | 陈 杰,杜 洋,彭 湃,黄贺雄,童明胜,熊 舒. 非稳态油藏理论及其在伊朗 A 油田的应用[J]. 岩性油气藏, 2015, 27(6): 125-131. |
[12] | 王 维,张英波,杨香华,王清斌,朱红涛. 黄河口凹陷 BZ-A-1 井区沙河街组“甜点”特征及成因机制[J]. 岩性油气藏, 2015, 27(5): 45-52. |
[13] | 赵宏波,何昕睿,王筱烨,谷道会. 潮水盆地构造特征[J]. 岩性油气藏, 2013, 25(2): 36-40. |
[14] | 张莹. 伸展褶皱及其对油气聚集的控制作用———以海拉尔盆地贝中次凹为例[J]. 岩性油气藏, 2012, 24(2): 16-20. |
[15] | 郭飞飞,康建云,孙建峰,陆俊泽,王修平. 江汉盆地构造演化与海相地层油气成藏模式[J]. 岩性油气藏, 2010, 22(1): 23-29. |
|