岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 93–103.doi: 10.12108/yxyqc.20210210

• 油气地质 • 上一篇    下一篇

珠江口盆地珠一坳陷古近系高自然伽马砂岩形成机制及油气地质意义

向巧维, 李小平, 丁琳, 杜家元   

  1. 中海石油 (中国) 有限公司深圳分公司, 广东 深圳 518000
  • 收稿日期:2020-04-10 修回日期:2020-07-13 出版日期:2021-04-01 发布日期:2021-03-31
  • 作者简介:向巧维(1983—),女,硕士,工程师,主要从事沉积储层方面的研究工作。地址:(518000)广东省深圳市南山区后海滨路3168号中海油大厦A座。Email:xiangqw@cnooc.com.cn。
  • 基金资助:
    “十三五”国家科技重大专项“南海东部海域勘探新领域及关键技术”(编号:2016ZX05024-004)资助

Formation mechanism and petroleum geological significance of Paleogene sandstone with high natural gamma value in Zhuyi Depression, Pearl River Mouth Basin

XIANG Qiaowei, LI Xiaoping, DING Lin, DU Jiayuan   

  1. Shenzhen Company of CNOOC, Shenzhen 518000, Guangdong, China
  • Received:2020-04-10 Revised:2020-07-13 Online:2021-04-01 Published:2021-03-31

摘要: 运用放射性元素寻找油气是一种非常规油气勘探手段。近年来,在珠江口盆地珠一坳陷富烃凹陷周边古近系钻遇高自然伽马(GR)砂岩,其GR值(100~300 API)甚至大于同区泥岩的GR值(100~200 API)。为了弄清该特殊现象背后的地质意义,对珠江口盆地珠一坳陷古近系高自然伽马砂岩开展了铀(U)、钍(Th)、钾(K)等3种元素含量与GR值的相关趋势线分析,从井震特征、岩性特征及矿物成分特征等入手分析了砂岩GR值增高的主要原因及成因机制,探讨了放射性元素聚集的条件、运移通道、驱动力以及油气意义。结果表明:西江、惠州地区由U含量增高导致砂岩GR值偏高,恩平、番禺地区由K,Th含量增高导致砂岩GR值偏高;砂岩GR值增高有两大成因机制,一是地下流体带来的放射性元素离子U4+在氧化-还原面处富集后导致地层GR值偏高,这种特殊现象说明在具有连通基底大断裂旁的圈闭中,U4+的富集指示了曾经油气的存在,证实了研究区油气运移通道的有效性,对于油气藏的预测有着非常重要的指导性意义,二是地表流体带来的含放射性元素的矿物大量沉积后导致地层GR值偏高,含放射性元素矿物性质不稳定,可指示近源供给的存在,对于判断物源及沉积环境有着非常重要的意义。该研究成果为预测研究区油气成藏有利区带提供了依据。

关键词: 高自然伽马砂岩, 放射性元素, 花岗岩, 古近系, 珠江口盆地

Abstract: It is an unconventional means of oil and gas exploration to use radioactive elements to search for oil and gas. In recent years,sandstones with high natural gamma (GR) value (100-300 API) have been drilled in Paleogene around the hydrocarbon-rich depression in Zhuyi Depression,Pearl River Mouth Basin,and the GR value is even higher than that of mudstone in the same area(100-200 API). In order to understand the geological significance behind this special phenomenon,the correlation trend line analysis of the contents of uranium (U), thorium (Th) and potassium (K) with GR value was carried out for the Paleogene sandstone with high GR value in Pearl River Mouth Basin. The main reasons and genetic mechanism of the increase of GR value of sandstone were analyzed from the characteristics of well seismic,lithology and mineral composition,and the accumulation conditions,migration channels,driving forces and hydrocarbon significance of radioactive elements were discussed. The results show that the GR value of sandstone is higher in Xijiang and Huizhou areas due to the increase of U content,and higher in Enping and Panyu areas due to the increase of K and Th content. There are two genetic mechanisms for the increase of GR value of sandstone. One is that the enrichment of radioactive element ion U4+ brought by underground fluid at oxidation-reduction surface leads to the high GR value of formation. This special phenomenon shows that the enrichment of U4+ indicates the existence of oil and gas in traps near large faults with connected basement,which confirms the effectiveness of oil and gas migration channels in the study area and has very important guiding significance for the prediction of oil and gas reservoirs. The other is that the massive deposition of minerals containing radioactive elements brought by surface fluids leads to the high GR value of strata and unstable properties of minerals containing radioactive elements,which can indicate the existence of near-source supply,and is of great significance for judging the provenance and sedimentary environment. The research results provide a basis for predicting favorable zones for hydrocarbon accumulation in the study area.

Key words: sandstone with high natural gamma value, radioactive element, granite, Paleogene, Pearl River Mouth Basin

中图分类号: 

  • P619.1
[1] 朱伟林, 米立军, 高阳东, 等. 中国近海近几年油气勘探特点及今后勘探方向. 中国海上油气, 2009, 21(1):1-8. ZHU W L, MI L J, GAO Y D, et al. Recent features and future directions of offshore hydrocarbon exploration in China. China Offshore Oil and Gas, 2009, 21(1):1-8.
[2] 刘池洋, 赵俊峰, 马艳萍, 等. 富烃凹陷特征及其形成研究现状与问题. 地学前缘, 2014, 21(1):75-88. LIU C Y, ZHAO J F, MA Y P, et al. The advances and problems in the study of the characteristics and formation of hydrocarbon-rich sags. Earth Science Frontiers, 2014, 21(1):75-88.
[3] SAUNDERS D F, BURTON K R, BRANCH J F, et al. New method of aerial and surface radiometric prospecting for oil, gas. Oil & Gas Journal, 1993, 91:104-109.
[4] ARTINGER R, RABUNG T, KIM J I, et al. Humic colloidborne migration of uranium in sand columns. Journal of Contaminant Hydrology, 2002, 58(1/2):1-12.
[5] 刘池洋, 谭成仟, 孙卫, 等. 多种能源矿产共存成藏(矿)机理与富集分布规律研究//刘池洋.盆地多种能源矿产共存富集成藏(矿)研究进展. 北京:科学出版社, 2005:1-16. LIU C Y, TAN C Q, SUN W, et al. Study on accumulation (ore) mechanism and enrichment distribution law of multi-energy minerals coexistence//LIU C Y. Research progress on coexistence, enrichment and accumulation of multiple energy and mineral resources in basin. Beijing:Science Press, 2005:1-16.
[6] 谭成仟, 刘池洋, 赵军龙, 等. 鄂尔多斯盆地典型地区放射性异常特征及其地质意义.中国科学:D辑地球科学, 2007, 37(增刊1):147-156. TAN C Q, LIU C Y, ZHAO J L, et al. Feature of high natural gamma anomaly and its geological implication of the typical area in Ordos Basin. Science in China Series D:Earth Sciences, 2007, 37(Suppl 1):147-156.
[7] 刘行军, 冯春珍, 柳益群, 等. 陕北长6段高自然伽马砂岩地球化学特征及意义. 成都理工大学学报(自然科学版), 2013, 40(4):445-456. LIU X J, FENG C Z, LIU Y Q, et al. Geochemical characteristics and significance of high natural gamma-ray sandstone in Chang 6 member of northern Shanxi. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(4):445-456.
[8] SU W B, HE L Q, WANG Y B, et al. K-bentonite beds and high-resolution integrated stratigraphy of the uppermost Ordovician Wufeng and the lowest Silurian Longmaxi formations in South China. Science in China(Series D), 2003, 46(11):1121-1133.
[9] 吴传芝, 杨宁, 李翻平, 等. 地表放射性油气勘探技术研究现状分析. 勘探地球物理进展, 2009, 32(4):239-247. WU C Z, YANG N, LI F P, et al. Analysis of research status of surface radioactive oil and gas exploration technology. Progress in Exploration Geophysics, 2009, 32(4):239-247.
[10] 王亮, 毛志强, 王睿, 等. 基于岩石物理实验的嘉二1储层高伽马成因分析. 测井技术, 2012, 36(6):564-568. WANG L, MAO Z Q, WANG R, et al. Genesis analysis on characteristics of high gamma ray in T1 J21 reservoir based on petrophysics experiments. Well Logging Technology, 2012, 36(6):564-568.
[11] 张小莉, 冯乔, 孙佩, 等. 鄂尔多斯盆地延长组高自然伽马砂岩储层特征. 地球物理学报, 2010, 53(1):205-213. ZHANG X L, FENG Q, SUN P, et al. Characteristics of high gamma ray reservoir of Yangchang Formation in Ordos Basin. Chinese Journal of Geophysics, 2010, 53(1):205-213.
[12] 孙佩, 张小莉, 郭兰, 等.相对高放射性砂岩成因及储集性能定性评价. 西安石油大学学报(自然科学版), 2010, 25(2):18-21. SUN P, ZHANG X L, GUO L, et al. The genetic and reservoir property evaluation of high radioactivity sandstone. Journal of Xi'an Shiyou University(Natural Science Edition), 2010, 25(2):18-21.
[13] 于振锋, 程日辉, 赵小青, 等.海拉尔盆地乌南凹陷南一段高伽马砂岩成因与识别.中国石油大学学报(自然科学版), 2012, 36(3):76-83. YU Z F, CHENG R H, ZHAO X Q, et al. Genesis and identification of high gamma sandstone in the first member of Nantun Formation of Wunan Depression in Hailar Basin. Journal of China University of Petroleum(Natural Science Edition), 2012, 36(3):76-83.
[14] 祝彦贺. 珠江口盆地早中新世陆架-陆坡沉积系统构成及储集体分布. 西安石油大学学报(自然科学版), 2011, 26(6):1-8. ZHU Y H. Composition and reservoir body distribution of continental shelf-continental slope sedimentary system in Early Eocene in Pearl River Mouth Basin. Journal of Xi'an Shiyou University(Natural Science Edition), 2011, 26(6):1-8.
[15] 刘金帅, 杨飞, 章学刚, 等. 放射性元素在地质中的应用:以楚雄盆地为例. 中国锰业,2017, 35(6):38-41. LIU J S, YANG F, ZHANG X G, et al. Application of radioactive elements in geology:Taking Chuxiong basin as an example. China Manganese Industry, 2017, 35(6):38-41.
[16] 于漫, 欧阳京, 第鹏飞, 等. 沉积环境有机质及在铀成矿中的作用研究. 地质找矿论从, 2011, 26(3):255-261. YU M, OUYANG J, DI P F, et al. Effect of organic matter in sedimentary environment on formation of uranium ore. Contributions to Geology and Mineral Resources Research, 2011, 26(3):255-261.
[17] 丁次乾. 矿场地球物理. 2版. 东营:中国石油大学出版社, 2008. DING C Q. Mine geophysics. 2nd ed. Dongying:China University of Petroleum Press, 2008.
[18] 朱筱敏.沉积岩石学. 4版.北京:石油工业出版社, 2008. ZHU X M. Sedimentary petrology. 4th ed. Beijing:Petroleum Industry Press, 2008.
[19] 陈世悦.矿物岩石学.东营:中国石油大学出版社, 2002. CHEN S Y. Mineral petrology. Dongying:China University of Petroleum Press, 2002.
[20] 黄建松, 安文武, 白武厚.陕北榆林气田山2段高自然伽马储集层特征及其成因分析.录井工程, 2007, 18(4):74-79. HUANG J S, AN W W, BAI W H. The reservoir features and genetic analysis of high natural gamma for member 2 of Yulin gas field of north Shanxi. Mud Logging Engineering, 2007, 18(4):74-79.
[21] 焦玉玺, 鄢继华, 陈世悦, 等.沧东凹陷孔二段高伽马砂岩成因探讨及识别.新疆石油地质, 2017, 38(3):309-313. JIAO Y X, YAN J H, CHEN S Y, et al. Genesis and identification of sandstones with high gamma values in the second member of Kongdian Formation,Cangdong Sag. Xinjiang Petroleum Geology, 2017, 38(3):309-313.
[22] 陶宏根, 程日辉, 赵小青, 等. 海拉尔盆地火山碎屑岩的测井响应与应用.地球物理学报, 2011, 54(2):534-544. TAO H G, CHENG R H, ZHAO X Q, et al. Well logging response to the volcaniclastic rocks of Hailaer Basin and application. Chinese Journal of Geophysics, 2011, 54(2):534-544.
[23] 刘安, 吴世敏.珠江口盆地花岗岩成因探讨及其对油气资源指示意义.地学前缘, 2011, 18(1):141-148. LIU A, WU S M. A discussion on the formation of granite in the Pearl River Mouth Basin and its implication to hydrocarbon resource. Earth Science Frontiers, 2011, 18(1):141-148.
[24] 胡圣标, 龙祖烈, 朱俊章, 等.珠江口盆地地温场特征及构造-热演化.石油学报, 2019, 40(增刊1):178-187. HU S B, LONG Z L, ZHU J Z, et al. Characteristics of geothermal field and the tectonic-thermal evolution in Pearl River Mouth Basin. Acta Petrolei Sinica, 2019, 40(Suppl 1):178-187.
[25] 王彩霞, 高宏, 陈立军. 自然伽马能谱测井在油田中的应用研究. 延安大学学报(自然科学版), 2016, 35(4):59-63. WANG C X, GAO H, CHEN L J. Application of natural Gamma ray spectrum logging in oilfield. Journal of Yan'an University (Natural Science Edition), 2016, 35(4):59-63.
[26] 谭成仟, 刘池阳, 赵军龙, 等.鄂尔多斯盆地高自然伽马值异常特征及主控因素研究. 石油地球物理勘探, 2007, 42(1):50-56. TAN C Q, LIU C Y, ZHAO J L, et al. Abnormity features of obvious natural gamma in Ordos Basin. Petroleum Geophysical Exploration, 2007, 42(1):50-56.
[27] 漆家福, 吴景富, 马兵山, 等.南海北部珠江口盆地中段伸展构造模型及其动力学.地学前缘, 2019, 26(2):203-221. QI J F, WU J F, MA B S, et al. The structural model and dynamics concerning middle section, Pearl River Mouth Basin in north margin of South China Sea. Earth Science Frontiers, 2019, 26(2):203-221.
[28] 妥成荣, 黄志新.沉积盆地铀-油(气)共生机理. 地质找矿论丛, 2016, 31(4):529-537. TUO C R, HUANG Z X. The symbiotic mechanism of uranium and hydrocarbon in sedimentary basin. Contributions to Geology and Mineral Resources Research, 2016, 31(4):529-537.
[29] 董伟, 马光强.铀分析在石油地质评价中的应用与探讨.录井工程, 2008, 19(3):71-74. DONG W, MA G Q. Application and discussion of uranium analysis in petroleum geology evaluation. Mud Logging Engineering, 2008, 19(3):71-74.
[30] CHARLES S. The roles of the organic matter in the formation of the uranium deposits in sedimentary rocks. Ore Geology Review, 1996, 11:53-69.
[31] LANDAIS P. Organic geochemistry of sedimentary uranium ore deposits. Ore Geology Review, 1996, 11:33-51.
[32] 叶博, 梁晓伟, 宋娟, 等. 鄂尔多斯盆地演武地区侏罗系延安组油藏成藏特征. 岩性油气藏, 2018, 30(4):65-73. YE B, LIANG X W, SONG J, et al. Reservoir accumulation characteristics of Jurassic Yan'an Formation in Yanwu area, Ordos Basin. Lithologic Reservoirs, 2018, 30(4):65-73.
[33] 唐建云, 张刚, 史政, 等. 鄂尔多斯盆地丰富川地区延长组流体包裹体特征及油气成藏期次. 岩性油气藏, 2019, 31(3):20-26. TANG J Y, ZHANG G, SHI Z, et al. Characteristics of fluid inclusions and hydrocarbon accumulation stages of Yanchang Formation in Fengfuchuan area, Ordos Basin. Lithologic Reservoirs, 2019, 31(3):20-26.
[34] 苑雅轩, 樊太亮, 苑学军, 等. 塔河油田蓬莱坝组异常地震特征及地质成因分析. 岩性油气藏, 2018, 30(6):98-108. YUAN Y X, FAN T L, YUAN X J, et al. Characteristics and geological genesis of anomalous seismic facies of Penglaiba Formation in Tahe Oilfield. Lithologic Reservoirs, 2018, 30(6):98-108.
[1] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[2] 张汶, 吕世聪, 赵大林, 贾海松, 蔡越钎. 渤海湾盆地西南部古近系滩坝沉积特征及主控因素[J]. 岩性油气藏, 2021, 33(3): 85-94.
[3] 黄华, 袁娟梅, 彭伟, 张亮, 文辉. 江汉盆地古近系潜江组盐湖沉积特征与成藏模式[J]. 岩性油气藏, 2021, 33(2): 9-16.
[4] 罗泽, 谢明英, 梁杰, 涂志勇, 侯凯. 地震伪井速度点宏观校正方法与应用——以珠江口盆地M气田为例[J]. 岩性油气藏, 2020, 32(3): 115-121.
[5] 庞小军, 王清斌, 解婷, 赵梦, 冯冲. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏, 2020, 32(2): 1-13.
[6] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[7] 罗泽, 谢明英, 涂志勇, 卫喜辉, 陈一鸣. 一套针对高泥质疏松砂岩薄储层的识别技术——以珠江口盆地X油田为例[J]. 岩性油气藏, 2019, 31(6): 95-101.
[8] 杜贵超, 苏龙, 陈国俊, 张功成, 丁超, 曹青, 鲁岳鑫. 番禺低隆起珠海组砂岩碳酸盐胶结特征及其对储层物性的影响[J]. 岩性油气藏, 2019, 31(3): 10-19.
[9] 刘恭利, 韩自军, 段新意, 甄宗玉. 薄互层火成岩地震响应特征及厚度预测[J]. 岩性油气藏, 2019, 31(3): 105-112.
[10] 李文静, 王英民, 何敏, 陈维涛, 徐少华, 卓海腾. 珠江口盆地中中新世陆架边缘三角洲的类型及控制因素[J]. 岩性油气藏, 2018, 30(2): 58-66.
[11] 杨占龙, 肖冬生, 周隶华, 黄云峰, 黄小鹏, 沙雪梅. 高分辨率层序格架下的陆相湖盆精细沉积体系研究——以吐哈盆地西缘侏罗系—古近系为例[J]. 岩性油气藏, 2017, 29(5): 1-10.
[12] 金凤鸣, 崔周旗, 王权, 李莉, 任春玲, 崔明洋, 肖伟. 冀中坳陷地层岩性油气藏分布特征与主控因素[J]. 岩性油气藏, 2017, 29(2): 19-27.
[13] 崔周旗, 李莉, 王宏霞, 王元杰, 郭柳汐, 侯凤梅. 霸县凹陷古近系深层砂岩储层特征与岩性油气藏勘探[J]. 岩性油气藏, 2017, 29(2): 51-58.
[14] 李富恒, 侯连华, 石磊, 肖坤叶, 石峰. 花岗岩油气藏成藏富集因素[J]. 岩性油气藏, 2017, 29(1): 81-89.
[15] 陈锋,朱筱敏,葛家旺,黎明,吴陈冰洁. 珠江口盆地陆丰南地区文昌组层序地层及沉积体系研究[J]. 岩性油气藏, 2016, 28(4): 67-77,94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[3] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[4] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[5] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[6] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[7] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[8] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[9] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .
[10] 王大兴,于波,张盟勃,宋琛. 地震叠前分析技术在子洲气田的研究与应用[J]. 岩性油气藏, 2008, 20(1): 95 -100 .