岩性油气藏 ›› 2023, Vol. 35 ›› Issue (4): 61–69.doi: 10.12108/yxyqc.20230406

• 地质勘探 • 上一篇    下一篇

一种基于改进共轭梯度法的弹性波全波形反演速度分层建模方法

王立德1, 王小卫1, 周辉2, 吴杰1, 张志强3, 王建乐1, 王德英1, 冯刚1   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 中国石油大学 (北京), 北京 昌平 102249;
    3. 中国石油大庆油田有限责任公司 采气分公司, 黑龙江 大庆 163000
  • 收稿日期:2022-09-26 修回日期:2022-10-28 出版日期:2023-07-01 发布日期:2023-07-01
  • 第一作者:王立德(1995-),男,硕士,工程师,主要从事人工智能速度建模、全波形反演和地震资料信号处理等领域的科研及生产工作。地址:(730020) 甘肃省兰州市城关区雁儿湾路535号。Email:wld2402364497@163.com。
  • 基金资助:
    中国石油天然气股份有限公司科技项目“人工智能速度建模方法研究”(编号:kt2020-10-06-02)与物探攻关项目“2022年塔里木盆地和田河周缘寒武系盐下地震成像攻关与目标落实”(编号:2022KKT0506)联合资助。

A layered velocity modeling method for elastic wave full waveform inversion based on improved conjugate gradient method

WANG Lide1, WANG Xiaowei1, ZHOU Hui2, WU Jie1, ZHANG Zhiqiang3, WANG Jianle1, WANG Deying1, FENG Gang1   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    2. China University of Petroleum(Beijing), Beijing 102249, China;
    3. Gas Production Company, PetroChina Daqing Oilfield Company, Daqing 163000, Heilongjiang, China
  • Received:2022-09-26 Revised:2022-10-28 Online:2023-07-01 Published:2023-07-01

摘要: 陆上地震资料由于低频信息缺失、波场复杂等问题,加剧了反演的非线性。基于改进共轭梯度法的时间域多尺度分层反演方法有效重建了纵、横波速度场。研究结果表明: ①利用时窗筛选早至波信息,使用小炮检距早至波数据自低频至高频多尺度重建浅层速度场,可以减少中深层反射波及噪声的强非线性影响;固定浅层速度,采用全波场的全偏移距数据可重建中深层速度场。②整个反演过程均利用基于移动加权平均的改进共轭梯度法进行速度场的迭代更新。改进的共轭梯度法可增强反演的稳定性,提高深层速度建模质量,同时反演收敛更快;分层反演策略可兼顾浅层低速和深层高速,采用大小不同的有限差分网格,保证波场模拟精度的同时减少了计算量,提高了反演计算效率;改进共轭梯度法的多尺度分层反演策略可有效降低陆上实际资料带来的非线性影响,使共成像点道集拉平程度更好,纵、横波速度场均得到有效恢复。

关键词: 时间域, 弹性波, 全波形反演, 多尺度, 共轭梯度, 分层反演, 有限差分, 速度建模

Abstract: Due to the lack of low-frequency information and complex wave field of land seismic data, the nonlinearity of elastic wave full waveform inversion is aggravated. A layered inversion strategy of time-domain multiscale inversion was proposed to reconstruct the P-wave and S-wave velocity based on the improved conjugate gradient method. The results show that: (1)Time window was used to screen the early arrival wave information and to constrain the offset size to reconstruct the velocity field in the shallow area from low frequency to high frequency, which can reduce the strong nonlinear effects caused by the reflected waves and noises in the middle and deep layers. The shallow velocity was fixed,and the full offset data of full wave field was used to conduct multi-scale inversion for the middle and deep layer velocity.(2)The whole inversion process used the improved conjugate gradient method based on moving weighted average to update the P-wave and S-wave velocity iteratively. The improved conjugate gradient method can enhance the stability of inversion, improve the quality of deep velocity modeling,and increase the convergence speed. The layered inversion strategy can reduce the amount of calculation and ensure the accuracy of wave field simulation by using staggered grid finite difference method with different mesh size, and improve the calculation efficiency of inversion. The layered inversion strategy based on the improved conjugate gradient can effectively reduce the nonlinear impact of the onshore actual data,making the common imaging point gathers flattened better and the velocity reconstructed more precise.

Key words: time domain, elastic wave, full waveform inversion, multi scale, conjugate gradient, layered inversion, finite difference, velocity modeling

中图分类号: 

  • TE319
[1] 卞爱飞,於文辉,周华伟.频率域全波形反演方法研究进展[J].地球物理学进展, 2010, 25(3):982-993. BIAN Aifei, YU Wenhui, ZHOU Huawei. Progress in the frequency-domain full waveform inversion method[J]. Progress in Geophysics, 2010, 25(3):982-993.
[2] 刘振峰.油气地震地质模型述评[J].岩性油气藏, 2018, 30(1):19-29. LIU Zhenfeng. Review on oil and gas seismogeology models[J]. Lithologic Reservoirs, 2018, 30(1):19-29.
[3] LAILLY P. The seismic inverse problem as a sequence of before stack migrations[C]. Philadelphia:SIAM Conference on Inverse Scattering, 1983:206-220.
[4] TARANTOLA A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8):1259-1266.
[5] TARANTOLA A. A strategy for nonlinear elastic wave inversion of seismic reflection data[J]. Geophysics, 1986, 51(10):1893-1903.
[6] 任浩然,王华忠,黄光辉.地震波反演成像方法的理论分析与对比[J].岩性油气藏, 2012, 24(5):12-18. REN Haoran, WANG Huazhong, HUANG Guanghui. Theoretical analysis and comparison of seismic wave inversion and imaging methods[J]. Lithologic Reservoirs, 2012, 24(5):12-18.
[7] MORA P. Elastic wave-field inversion of reflection and transmission data[J]. Geophysics, 1988, 53(6):750-759.
[8] PRATT R G. Seismic waveform inversion in the frequency domain, Part 1:Theory and verification in physical scale model[J]. Geophysics, 1999, 64(3):888-901.
[9] SHIN C, CHA Y H. Waveform inversion in the Laplace domain[J]. Geophysical Journal International, 2008, 173(3):922-931.
[10] HA W, SHIN C. Why do Laplace-domain waveform inversions yield long-wavelength results[J]. Geophysics, 2013, 78(4):167-173.
[11] PARK E, HA W, CHUNG W, et al. 2D Laplace-domain waveform inversion of field data using a power objective function[J]. Pure and Applied Geophysics, 2013, 170(12):2075-2085.
[12] SHIN J, KIM Y, SHIN C, et al. Laplace-domain full waveform inversion using irregular finite elements for complex foothill environments[J]. Journal of Applied Geophysics, 2013, 96(1):67-76.
[13] 胡光辉,杜泽源,何兵红,等.近地表复杂区早至波全波形反演建模技术与应用[J].石油物探, 2019, 58(6):811-818. HU Guanghui, DU Zeyuan, HE Binghong, et al. Full waveform inversion based on early arrival waves and its application in complex near-surface area[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):811-818.
[14] 王永生,胡杰,张静,等.宽频勘探技术在柴北缘深层侏罗系勘探中的应用[J].岩性油气藏, 2017, 29(6):101-107. WANG Yongsheng, HU Jie, ZHANG Jing, et al. Wide-frequency prospecting technology and its application on deep-seated Jurassic exploration in northern margin of Qaidam Basin[J]. Lithologic Reservoirs, 2017, 29(6):101-107.
[15] 王华忠,王雄文,王西文.地震波反演的基本问题分析[J].岩性油气藏, 2012, 24(6):1-9. WANG Huazhong, WANG Xiongwen, WANG Xiwen. Analysis of the basic problems of seismic wave inversion[J]. Lithologic Reservoirs, 2012, 24(6):1-9.
[16] ZOU Fangyu, SHEN Li. On the convergence of weighted adagrad with momentum for training deep neural networks[J]. Computer Science, 2018:1-19.
[17] ZHANG Qingchen,ZHOU Hui,LI Qingqing,et al. Robust source-independent elastic full-waveform inversion in the time domain robust source-independent elastic FWI[J]. Geophysics, 2016, 81(2):29-44.
[18] BAUMSTEIN A, ANDERSON J, HINKLEY D, et al. Scaling of the objective function gradient for full wavefield inversion[G]. The 79th SEG Expanded Abstracts, 2009:2243-2247.
[19] 王孝,刘文卿,曾华会,等.复杂区分层约束近地表建模方法及应用[J].岩性油气藏, 2018, 30(4):68-73. WANG Xiao, LIU Wenqing, ZENG Huahui, et al. Stratified constrained near-surface model building method and its application in complex surface area[J]. Lithologic Reservoirs, 2018, 30(4):68-73.
[1] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[2] 徐兴荣, 苏勤, 孙甲庆, 曾华会, 肖明图, 刘梦丽. 高精度组合剩余静校正方法及其应用[J]. 岩性油气藏, 2021, 33(5): 132-139.
[3] 刘梦丽, 徐兴荣, 王小卫, 胡书华, 刘金涛. 预条件弹性介质最小二乘逆时偏移[J]. 岩性油气藏, 2020, 32(5): 133-142.
[4] 李玉凤, 孙炜, 何巍巍, 杨云飞, 章新文, 严移胜. 基于叠前反演的泥页岩地层压力预测方法[J]. 岩性油气藏, 2019, 31(1): 113-121.
[5] 刘文卿, 王孝, 胡书华, 张涛, 金保中. 测井与全方位道集联合各向异性参数建模及成像[J]. 岩性油气藏, 2018, 30(6): 83-88.
[6] 韩令贺, 胡自多, 冯会元, 刘威, 杨哲, 王艳香. 井震联合网格层析各向异性速度建模研究及应用[J]. 岩性油气藏, 2018, 30(4): 91-97.
[7] 杨哲, 刘威, 胡自多, 王述江, 韩令贺, 王艳香. 时空域波动方程混合网格有限差分数值模拟[J]. 岩性油气藏, 2018, 30(2): 93-109.
[8] 刘建坤, 蒋廷学, 万有余, 吴春方, 刘世华. 致密砂岩薄层压裂工艺技术研究及应用[J]. 岩性油气藏, 2018, 30(1): 165-172.
[9] 陈可洋. 逆时成像技术在大庆探区复杂构造成像中的应用[J]. 岩性油气藏, 2017, 29(6): 91-100.
[10] 郭 肖,任 影,吴红琴 . 考虑应力敏感和吸附的页岩表观渗透率模型[J]. 岩性油气藏, 2015, 27(4): 109-112.
[11] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟[J]. 岩性油气藏, 2014, 26(5): 91-96.
[12] 王华忠,王雄文,王西文. 地震波反演的基本问题分析[J]. 岩性油气藏, 2012, 24(6): 1-9.
[13] 王华忠,冯波,李辉,王雄文,胡江涛. 各种速度分析与反演方法的对比研究[J]. 岩性油气藏, 2012, 24(5): 1-11.
[14] 陈可洋. 基于拉普拉斯算子的叠前逆时噪声压制方法[J]. 岩性油气藏, 2011, 23(5): 87-95.
[15] 陈可洋. 井间弹性波波场散射特征数值模拟分析[J]. 岩性油气藏, 2011, 23(3): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .