岩性油气藏 ›› 2018, Vol. 30 ›› Issue (2): 93–109.doi: 10.12108/yxyqc.20180211

• 技术方法 • 上一篇    下一篇

时空域波动方程混合网格有限差分数值模拟

杨哲, 刘威, 胡自多, 王述江, 韩令贺, 王艳香   

  1. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2018-01-12 修回日期:2018-02-13 出版日期:2018-03-21 发布日期:2018-03-21
  • 第一作者:杨哲(1986-),男,硕士,工程师,主要从事地震资料处理、波动方程数值模拟及偏移成像方法等方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:yang_zhe@petrochina.com.cn。
  • 基金资助:
    国家重点研发计划项目“面向E级计算的能源勘探高性能应用软件系统与示范”(编号:2017YFB0202905)资助

Mixed-grid finite-difference methods for wave equation numerical modeling in time-space domain

YANG Zhe, LIU Wei, HU Ziduo, WANG Shujiang, HAN Linghe, WANG Yanxiang   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2018-01-12 Revised:2018-02-13 Online:2018-03-21 Published:2018-03-21

摘要: 传统2 M阶有限差分格式(Tradtional 2 Mth-order Finite-Difference Schemes,T2 M-FD)和时空域2 M阶有限差分格式(Time-Space Domain 2 Mth-order Finite-difference,TS2 M-FD)均是目前应用较普遍且具代表性的高精度有限差分方法。T2 M-FD仅基于空间域频散关系求解差分系数,模拟精度较低。TS2 M-FD基于时空域频散关系和平面波理论求解差分系数,模拟精度较高。T2 M-FD和TS2 MFD的差分格式相同,都是只利用常规直角坐标系中坐标轴上的网格点差分近似波动方程中的Laplace算子,而没能充分利用旋转直角坐标系中距离差分中心点更近的网格点来进一步提高模拟精度。本次研究提出利用常规直角坐标系和旋转直角坐标系中的网格点一起差分近似波动方程中的Laplace算子,并将Laplace算子表示为常规直角坐标系中M个Laplace算子和旋转直角坐标系中N个Laplace算子的加权平均,构建出一种新的混合2 M+N型有限差分格式(M2 M+N-FD)。推导出M2 M+N-FD基于时空域频散关系和平面波理论的差分系数计算方法,进行频散及稳定性分析。频散分析表明:与T2 M-FD和TS2 M-FD相比,M2 M+N-FD能更有效地压制数值频散,模拟精度更高。稳定性分析表明:M2 M+N-FD和TS2 M-FD的稳定性基本相当,比T2 M-FD的稳定性强。最后,利用M2 M+N-FD进行均匀介质和层状介质模型的数值模拟试验,并将其推广应用于Marmousi模型的逆时偏移,高精度的数值模拟结果和偏移成像质量证明了M2 M+N-FD的优越性和普遍适用性。

Abstract: Traditional high-order finite-difference (FD)scheme (T2 M-FD)and time-space-domain high-order finite-difference scheme (TS2 M-FD)are the most widely used higher-accuracy numerical modeling methods for seismic wave equation. T2 M-FD, with its FD coefficients calculated only based on space-domain dispersion relationship, has relatively low accuracy. TS2 M-FD, with its FD coefficients calculated based on time-space-domain dispersion relationship and plane wave theory, has relatively higher accuracy. However, T2 M-FD and TS2 M-FD have the same FD scheme only using the grid points in the general coordinate system to approximate the Laplace operator in the wave equation, having not taking full use of the grid points in the rotated coordinate system to further improve the modeling accuracy. We proposed to use the grid points in the general and rotated coordinate system together to conduct difference approximation for the Laplace operator, and constructed a new kind of mixed 2 M+N style FD schemes, M2 M+N-FD for short, and derived the approach for calculating the FD coefficients based on the time-space domain dispersion relationship and plane wave theory. And then we carried out dispersion analysis and stability analysis. Dispersion analysis shows that, comparing to T2 M-FD and TS2 M-FD, M2 M+N-FD can more effectively suppress the numerical dispersion and have higher modeling accuracy. Stability analysis shows that, M2 M + N-FD has better stability than T2 M-FD, and has almost the same stability with TS2 M-FD. In the end, we conduct numerical modeling test on homogeneous and layer model with M2 M+N-FD, and implement RTM on Marmousi model with M2 M+N-FD. The high accuracy modeling and migration results demonstrate the superiority and universal applicability of M2 M+N-FD.

中图分类号: 

  • P631.4
[1] BAYSAL E, KOSLOFF D, SHERWOOD J. Reverse time migration. Geophysics, 1983, 48(11):1514-1524.
[2] LOEWENTHAL D, MUFTI I. Reversed time migration in spatial frequency domain. Geophysics, 1983, 48(5):627-635.
[3] ETGEN J, GRAY S, ZHANG Y. An overview of depth imaging in exploration geophysics. Geophysics, 2009, 74(6):WCA5-WCA17.
[4] 陈可洋, 陈树民, 李来林, 等.地震波动方程方向行波波场分离正演数值模拟与逆时偏移.岩性油气藏, 2014, 26(4):130-136. CHEN K Y, CHEN S M, LI L L, et al. Directional one-way wave field separating numerical simulation of the seismic wave equation and reverse-time migration. Lithologic Reservoirs, 2014, 26(4):130-136.
[5] 陈可洋, 吴清岭, 范兴才, 等.地震波逆时偏移中不同域成像点道集偏移噪声分析. 岩性油气藏, 2014, 26(2):118-124. CHEN K Y, WU Q L, FAN X C, et al. Seismic wave reversetime migration noise analysis within different common imaging point gathers. Lithologic Reservoirs, 2014, 26(2):118-124.
[6] 陈可洋. 逆时成像技术在大庆探区复杂构造成像中的应用. 岩性油气藏, 2017, 29(6):91-100. CHEN K Y. Application of reverse-time migration technology to complex structural imaging in Daqing exploration area. Lithologic Reservoirs, 2017, 29(6):91-100.
[7] TARANTOLA A. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49(8):1259-1266.
[8] TARANTOLA A. A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics, 1986, 51(10):1893-1903.
[9] GERHARD P, SHIN C, HICKS. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophysical Journal International, 1998, 133(2):341-362.
[10] VIRIEUX J, OPERTO S. An overview of full-waveform inversion in exploration geophysics. Geophysics, 2009, 74(6):WCC1-WCC26.
[11] KOSLOFF D,BAYSAL E. Forward modeling by a Fourier method. Geophysics, 1982, 47(10):1402-1412.
[12] KOSLOFF D, RESHEF M, LOEWENTHAL D. Elastic wave calculations by the Fourier method. Bulletin of the Seismological Society of America, 1984, 74(3):875-891.
[13] RESHEF M, KOSLOFF D, EDWARDS M, et al. Three-dimensional acoustic modeling by the Fourier method. Geophysics, 1988, 53(9):1175-1183.
[14] RESHEF M, KOSLOFF D, EDWARDS M, et al. Three-dimensional elastic modeling by the Fourier method. Geophysics, 1988, 53(9):1184-1193.
[15] MARFURT K. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 1984, 49(5):533-549.
[16] 杜世通.地震波动力学理论与方法.东营:中国石油大学出版社, 2008. DU S T. Seismic waves dynamics theory and methods. Dongying:China University of Petroleum Press, 2008.
[17] 胡光辉, 王立歆, 方伍宝. 全波形反演方法及应用. 北京:石油工业出版社, 2014. HU G H, WANG L X, FANG W B. Full waveform inversion method and application. Beijing:Petroleum Industry Press, 2014.
[18] ALTERMAN Z, KARAL F C. Propagation of elastic waves in layered media by finite difference methods. Bulletin of the Seismological Society of America, 1968, 58(1):367-398.
[19] ALFORD R, KELLY K, BOORE D. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 1974, 39(6):834-842.
[20] KELLY K, WARD R, TREITEL S, et al. Synthetic seismograms:a finite-difference approach. Geophysics, 1976, 41(1):2-27.
[21] 李胜军, 刘伟方, 高建虎.正演模拟技术在碳酸盐岩溶洞响应特征研究中的应用. 岩性油气藏, 2011, 23(4):106-109. LI S J, LIU W F, GAO J H. Application of forward modeling to research of carbonate cave response. Lithologic Reservoirs, 2011, 23(4):106-109.
[22] DABLAIN M. The application of high-order differencing to the scalar wave equation. Geophysics, 1986, 51(1):54-66.
[23] FORNBERG B. Classroom note:Calculation of weights in finite difference formulas. SIAM Review, 1998, 40(3):685-691.
[24] 刘洋, 李承楚, 牟永光. 任意偶数阶精度有限差分法数值模拟.石油地球物理勘探, 1998, 33(1):1-10. LIU Y, LI C C, MOU Y G. Finite-difference numerical modeling of any even-order accuracy. Oil Geophysical Prospecting, 1998, 33(1):1-10.
[25] VIRIEUX J. SH-wave propagation in heterogeneous media:Velocity-stress finite-difference method. Geophysics, 1984, 49(11):1933-1942.
[26] VIRIEUX J. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method. Geophysics, 1986, 51(4):889-901.
[27] NIHEI T, ISHⅡ K. A fast solver of the shallow water equations on a sphere using a combined compact difference scheme. Journal of Computational Physics, 2003, 187(2):639-659.
[28] SHERER S E, SCOTT J N. High-order compact finite-difference methods on general overset grids. Journal of Computational Physics, 2005, 210(2):459-496.
[29] LIAO W. On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3 D acoustic wave equation. Journal of Computational and Applied Mathematics, 2014, 270:571-583.
[30] FOMEL S, YING L, SONG X. Seismic wave extrapolation using lowrank symbol approximation. Geophysical Prospecting, 2013, 61(3):526-536.
[31] 方刚.基于Lowrank分解的地震正演模拟与逆时偏移方法研究.青岛:中国石油大学(华东), 2014. FANG G. Study on seismic modeling based on lowrank decomposition and reverse time migration. Qingdao:China University of Petroleum(East China), 2014
[32] LIU Y, SEN M K. A new time-space domain high-order finitedifference method for the acoustic wave equation. Journal of Computational Physics, 2009, 228(23):8779-8806.
[33] LIU Y, SEN M K. Time-space domain dispersion-relation-based finite-difference method with arbitrary even-order accuracy for the 2 D acoustic wave equation. Journal of Computational Physics, 2013, 232(1):327-345.
[34] JO C, SHIN C, SUH J. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics, 1996, 61(2):529-537.
[35] SHIN C, SOHN H. A frequency-space 2-D scalar wave extrapolator using extended 25-point finite-difference operator. Geophysics, 1998, 63(1):289-296.
[36] HUSTEDT B, OPERTO S, VIRIEUX J. Mixed-grid and staggeredgrid finite-difference methods for frequency-domain acoustic wave modelling. Geophysical Journal International, 2004, 157(3):1269-1296.
[37] 曹书红,陈景波.声波方程频率域高精度正演的17点格式及数值实现.地球物理学报, 2012, 55(10):3440-3449. CAO S H, CHEN J B. A 17-point scheme and its numerical implementation for high-accuracy modeling of frequency-domain acoustic equation. Chinese Journal of Geophysics, 2012, 55(10):3440-3449.
[38] CHEN J. An average-derivative optimal scheme for frequencydomain scalar wave equation. Geophysics, 2012, 77(6):T201-T10.
[39] TANG X, LIU H, ZHANG H, et al. An adaptable 17-point scheme for high-accuracy frequency-domain acoustic wave modeling in 2 D constant density media. Geophysics, 2015, 80(6):T211-T21.
[40] 张衡, 刘洪, 唐祥德, 等.基于平均导数优化方法的VTI介质频率空间域正演.地球物理学报, 2015, 58(9):3306-3316. ZHANG H, LIU H, TANG X D,et al. Forward modeling of VTI media in the frequency-space domain based on an average derivative optimal method. Chinese Journal of Geophysics, 2015, 58(9):3306-3316.
[1] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[2] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[3] 苏勤, 曾华会, 徐兴荣, 王德英, 孟会杰. 沙漠区地震数据高分辨率处理关键方法及其在尼日尔Agedem地区的应用[J]. 岩性油气藏, 2023, 35(6): 18-28.
[4] 范蕊, 刘卉, 杨沛广, 孙星, 马辉, 郝菲, 张珊珊. 阿曼盆地A区白垩系泥岩充填型碳酸盐岩溶蚀沟谷识别技术[J]. 岩性油气藏, 2023, 35(6): 72-81.
[5] 刘亚明, 王丹丹, 田作基, 张志伟, 王童奎, 王朝锋, 阳孝法, 周玉冰. 巴西桑托斯盆地复杂碳酸盐岩油田火成岩发育特征及预测方法[J]. 岩性油气藏, 2023, 35(6): 127-137.
[6] 王立德, 王小卫, 周辉, 吴杰, 张志强, 王建乐, 王德英, 冯刚. 一种基于改进共轭梯度法的弹性波全波形反演速度分层建模方法[J]. 岩性油气藏, 2023, 35(4): 61-69.
[7] 李胜军, 高建虎, 张繁昌, 贺东阳, 桂金咏. 一种基于压缩感知理论的强反射地震信号消减方法[J]. 岩性油气藏, 2023, 35(4): 70-78.
[8] 许鑫, 杨午阳, 张凯, 魏新建, 张向阳, 李海山. 三维初至波旅行时层析速度反演算法优化[J]. 岩性油气藏, 2023, 35(4): 79-89.
[9] 周东红, 谭辉煌, 张生强. 渤海海域垦利6-1油田新近系复合河道砂体地震描述技术[J]. 岩性油气藏, 2022, 34(4): 13-21.
[10] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
[11] 张猛. 基于GPU并行加速的黏声最小二乘逆时偏移及应用[J]. 岩性油气藏, 2022, 34(1): 148-153.
[12] 陈永波, 张虎权, 张寒, 曾华会, 王斌, 王洪求, 许多年, 马永平, 宗兆云. 基于OVT域偏移数据的云质岩储层预测技术及应用——以玛湖凹陷乌夏地区风三段为例[J]. 岩性油气藏, 2021, 33(6): 145-155.
[13] 徐兴荣, 苏勤, 孙甲庆, 曾华会, 肖明图, 刘梦丽. 高精度组合剩余静校正方法及其应用[J]. 岩性油气藏, 2021, 33(5): 132-139.
[14] 赵岩, 毛宁波, 陈旭. 基于时频域信噪比的自适应增益限反Q滤波方法[J]. 岩性油气藏, 2021, 33(4): 85-92.
[15] 孟会杰, 苏勤, 曾华会, 徐兴荣, 刘桓, 张小美. 基于独立分量分析的地震信号盲源分离及应用[J]. 岩性油气藏, 2021, 33(4): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .