岩性油气藏 ›› 2018, Vol. 30 ›› Issue (2): 93–109.doi: 10.12108/yxyqc.20180211

• 技术方法 • 上一篇    下一篇

时空域波动方程混合网格有限差分数值模拟

杨哲, 刘威, 胡自多, 王述江, 韩令贺, 王艳香   

  1. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2018-01-12 修回日期:2018-02-13 出版日期:2018-03-21 发布日期:2018-03-21
  • 作者简介:杨哲(1986-),男,硕士,工程师,主要从事地震资料处理、波动方程数值模拟及偏移成像方法等方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:yang_zhe@petrochina.com.cn。
  • 基金资助:
    国家重点研发计划项目“面向E级计算的能源勘探高性能应用软件系统与示范”(编号:2017YFB0202905)资助

Mixed-grid finite-difference methods for wave equation numerical modeling in time-space domain

YANG Zhe, LIU Wei, HU Ziduo, WANG Shujiang, HAN Linghe, WANG Yanxiang   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2018-01-12 Revised:2018-02-13 Online:2018-03-21 Published:2018-03-21

摘要: 传统2 M阶有限差分格式(Tradtional 2 Mth-order Finite-Difference Schemes,T2 M-FD)和时空域2 M阶有限差分格式(Time-Space Domain 2 Mth-order Finite-difference,TS2 M-FD)均是目前应用较普遍且具代表性的高精度有限差分方法。T2 M-FD仅基于空间域频散关系求解差分系数,模拟精度较低。TS2 M-FD基于时空域频散关系和平面波理论求解差分系数,模拟精度较高。T2 M-FD和TS2 MFD的差分格式相同,都是只利用常规直角坐标系中坐标轴上的网格点差分近似波动方程中的Laplace算子,而没能充分利用旋转直角坐标系中距离差分中心点更近的网格点来进一步提高模拟精度。本次研究提出利用常规直角坐标系和旋转直角坐标系中的网格点一起差分近似波动方程中的Laplace算子,并将Laplace算子表示为常规直角坐标系中M个Laplace算子和旋转直角坐标系中N个Laplace算子的加权平均,构建出一种新的混合2 M+N型有限差分格式(M2 M+N-FD)。推导出M2 M+N-FD基于时空域频散关系和平面波理论的差分系数计算方法,进行频散及稳定性分析。频散分析表明:与T2 M-FD和TS2 M-FD相比,M2 M+N-FD能更有效地压制数值频散,模拟精度更高。稳定性分析表明:M2 M+N-FD和TS2 M-FD的稳定性基本相当,比T2 M-FD的稳定性强。最后,利用M2 M+N-FD进行均匀介质和层状介质模型的数值模拟试验,并将其推广应用于Marmousi模型的逆时偏移,高精度的数值模拟结果和偏移成像质量证明了M2 M+N-FD的优越性和普遍适用性。

Abstract: Traditional high-order finite-difference (FD)scheme (T2 M-FD)and time-space-domain high-order finite-difference scheme (TS2 M-FD)are the most widely used higher-accuracy numerical modeling methods for seismic wave equation. T2 M-FD, with its FD coefficients calculated only based on space-domain dispersion relationship, has relatively low accuracy. TS2 M-FD, with its FD coefficients calculated based on time-space-domain dispersion relationship and plane wave theory, has relatively higher accuracy. However, T2 M-FD and TS2 M-FD have the same FD scheme only using the grid points in the general coordinate system to approximate the Laplace operator in the wave equation, having not taking full use of the grid points in the rotated coordinate system to further improve the modeling accuracy. We proposed to use the grid points in the general and rotated coordinate system together to conduct difference approximation for the Laplace operator, and constructed a new kind of mixed 2 M+N style FD schemes, M2 M+N-FD for short, and derived the approach for calculating the FD coefficients based on the time-space domain dispersion relationship and plane wave theory. And then we carried out dispersion analysis and stability analysis. Dispersion analysis shows that, comparing to T2 M-FD and TS2 M-FD, M2 M+N-FD can more effectively suppress the numerical dispersion and have higher modeling accuracy. Stability analysis shows that, M2 M + N-FD has better stability than T2 M-FD, and has almost the same stability with TS2 M-FD. In the end, we conduct numerical modeling test on homogeneous and layer model with M2 M+N-FD, and implement RTM on Marmousi model with M2 M+N-FD. The high accuracy modeling and migration results demonstrate the superiority and universal applicability of M2 M+N-FD.

中图分类号: 

  • P631.4
[1] BAYSAL E, KOSLOFF D, SHERWOOD J. Reverse time migration. Geophysics, 1983, 48(11):1514-1524.
[2] LOEWENTHAL D, MUFTI I. Reversed time migration in spatial frequency domain. Geophysics, 1983, 48(5):627-635.
[3] ETGEN J, GRAY S, ZHANG Y. An overview of depth imaging in exploration geophysics. Geophysics, 2009, 74(6):WCA5-WCA17.
[4] 陈可洋, 陈树民, 李来林, 等.地震波动方程方向行波波场分离正演数值模拟与逆时偏移.岩性油气藏, 2014, 26(4):130-136. CHEN K Y, CHEN S M, LI L L, et al. Directional one-way wave field separating numerical simulation of the seismic wave equation and reverse-time migration. Lithologic Reservoirs, 2014, 26(4):130-136.
[5] 陈可洋, 吴清岭, 范兴才, 等.地震波逆时偏移中不同域成像点道集偏移噪声分析. 岩性油气藏, 2014, 26(2):118-124. CHEN K Y, WU Q L, FAN X C, et al. Seismic wave reversetime migration noise analysis within different common imaging point gathers. Lithologic Reservoirs, 2014, 26(2):118-124.
[6] 陈可洋. 逆时成像技术在大庆探区复杂构造成像中的应用. 岩性油气藏, 2017, 29(6):91-100. CHEN K Y. Application of reverse-time migration technology to complex structural imaging in Daqing exploration area. Lithologic Reservoirs, 2017, 29(6):91-100.
[7] TARANTOLA A. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49(8):1259-1266.
[8] TARANTOLA A. A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics, 1986, 51(10):1893-1903.
[9] GERHARD P, SHIN C, HICKS. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophysical Journal International, 1998, 133(2):341-362.
[10] VIRIEUX J, OPERTO S. An overview of full-waveform inversion in exploration geophysics. Geophysics, 2009, 74(6):WCC1-WCC26.
[11] KOSLOFF D,BAYSAL E. Forward modeling by a Fourier method. Geophysics, 1982, 47(10):1402-1412.
[12] KOSLOFF D, RESHEF M, LOEWENTHAL D. Elastic wave calculations by the Fourier method. Bulletin of the Seismological Society of America, 1984, 74(3):875-891.
[13] RESHEF M, KOSLOFF D, EDWARDS M, et al. Three-dimensional acoustic modeling by the Fourier method. Geophysics, 1988, 53(9):1175-1183.
[14] RESHEF M, KOSLOFF D, EDWARDS M, et al. Three-dimensional elastic modeling by the Fourier method. Geophysics, 1988, 53(9):1184-1193.
[15] MARFURT K. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 1984, 49(5):533-549.
[16] 杜世通.地震波动力学理论与方法.东营:中国石油大学出版社, 2008. DU S T. Seismic waves dynamics theory and methods. Dongying:China University of Petroleum Press, 2008.
[17] 胡光辉, 王立歆, 方伍宝. 全波形反演方法及应用. 北京:石油工业出版社, 2014. HU G H, WANG L X, FANG W B. Full waveform inversion method and application. Beijing:Petroleum Industry Press, 2014.
[18] ALTERMAN Z, KARAL F C. Propagation of elastic waves in layered media by finite difference methods. Bulletin of the Seismological Society of America, 1968, 58(1):367-398.
[19] ALFORD R, KELLY K, BOORE D. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 1974, 39(6):834-842.
[20] KELLY K, WARD R, TREITEL S, et al. Synthetic seismograms:a finite-difference approach. Geophysics, 1976, 41(1):2-27.
[21] 李胜军, 刘伟方, 高建虎.正演模拟技术在碳酸盐岩溶洞响应特征研究中的应用. 岩性油气藏, 2011, 23(4):106-109. LI S J, LIU W F, GAO J H. Application of forward modeling to research of carbonate cave response. Lithologic Reservoirs, 2011, 23(4):106-109.
[22] DABLAIN M. The application of high-order differencing to the scalar wave equation. Geophysics, 1986, 51(1):54-66.
[23] FORNBERG B. Classroom note:Calculation of weights in finite difference formulas. SIAM Review, 1998, 40(3):685-691.
[24] 刘洋, 李承楚, 牟永光. 任意偶数阶精度有限差分法数值模拟.石油地球物理勘探, 1998, 33(1):1-10. LIU Y, LI C C, MOU Y G. Finite-difference numerical modeling of any even-order accuracy. Oil Geophysical Prospecting, 1998, 33(1):1-10.
[25] VIRIEUX J. SH-wave propagation in heterogeneous media:Velocity-stress finite-difference method. Geophysics, 1984, 49(11):1933-1942.
[26] VIRIEUX J. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method. Geophysics, 1986, 51(4):889-901.
[27] NIHEI T, ISHⅡ K. A fast solver of the shallow water equations on a sphere using a combined compact difference scheme. Journal of Computational Physics, 2003, 187(2):639-659.
[28] SHERER S E, SCOTT J N. High-order compact finite-difference methods on general overset grids. Journal of Computational Physics, 2005, 210(2):459-496.
[29] LIAO W. On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3 D acoustic wave equation. Journal of Computational and Applied Mathematics, 2014, 270:571-583.
[30] FOMEL S, YING L, SONG X. Seismic wave extrapolation using lowrank symbol approximation. Geophysical Prospecting, 2013, 61(3):526-536.
[31] 方刚.基于Lowrank分解的地震正演模拟与逆时偏移方法研究.青岛:中国石油大学(华东), 2014. FANG G. Study on seismic modeling based on lowrank decomposition and reverse time migration. Qingdao:China University of Petroleum(East China), 2014
[32] LIU Y, SEN M K. A new time-space domain high-order finitedifference method for the acoustic wave equation. Journal of Computational Physics, 2009, 228(23):8779-8806.
[33] LIU Y, SEN M K. Time-space domain dispersion-relation-based finite-difference method with arbitrary even-order accuracy for the 2 D acoustic wave equation. Journal of Computational Physics, 2013, 232(1):327-345.
[34] JO C, SHIN C, SUH J. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics, 1996, 61(2):529-537.
[35] SHIN C, SOHN H. A frequency-space 2-D scalar wave extrapolator using extended 25-point finite-difference operator. Geophysics, 1998, 63(1):289-296.
[36] HUSTEDT B, OPERTO S, VIRIEUX J. Mixed-grid and staggeredgrid finite-difference methods for frequency-domain acoustic wave modelling. Geophysical Journal International, 2004, 157(3):1269-1296.
[37] 曹书红,陈景波.声波方程频率域高精度正演的17点格式及数值实现.地球物理学报, 2012, 55(10):3440-3449. CAO S H, CHEN J B. A 17-point scheme and its numerical implementation for high-accuracy modeling of frequency-domain acoustic equation. Chinese Journal of Geophysics, 2012, 55(10):3440-3449.
[38] CHEN J. An average-derivative optimal scheme for frequencydomain scalar wave equation. Geophysics, 2012, 77(6):T201-T10.
[39] TANG X, LIU H, ZHANG H, et al. An adaptable 17-point scheme for high-accuracy frequency-domain acoustic wave modeling in 2 D constant density media. Geophysics, 2015, 80(6):T211-T21.
[40] 张衡, 刘洪, 唐祥德, 等.基于平均导数优化方法的VTI介质频率空间域正演.地球物理学报, 2015, 58(9):3306-3316. ZHANG H, LIU H, TANG X D,et al. Forward modeling of VTI media in the frequency-space domain based on an average derivative optimal method. Chinese Journal of Geophysics, 2015, 58(9):3306-3316.
[1] 赵岩, 毛宁波, 陈旭. 基于时频域信噪比的自适应增益限反Q滤波方法[J]. 岩性油气藏, 2021, 33(4): 85-92.
[2] 孟会杰, 苏勤, 曾华会, 徐兴荣, 刘桓, 张小美. 基于独立分量分析的地震信号盲源分离及应用[J]. 岩性油气藏, 2021, 33(4): 93-100.
[3] 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120.
[4] 孙夕平, 张昕, 李璇, 韩永科, 王春明, 魏军, 胡英, 徐光成, 张明, 戴晓峰. 基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J]. 岩性油气藏, 2021, 33(1): 220-228.
[5] 姚军, 乐幸福, 陈娟, 苏旺, 张永峰. 基于拟三维多属性反演的优质烃源岩分布预测[J]. 岩性油气藏, 2021, 33(1): 248-257.
[6] 张艳, 高世臣, 孟婉莹, 成育红, 蒋思思. 致密砂岩储层AVO正演模拟过程中的不确定性分析[J]. 岩性油气藏, 2020, 32(6): 120-128.
[7] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[8] 刘梦丽, 徐兴荣, 王小卫, 胡书华, 刘金涛. 预条件弹性介质最小二乘逆时偏移[J]. 岩性油气藏, 2020, 32(5): 133-142.
[9] 戴晓峰, 谢占安, 杜本强, 张明, 唐廷科, 李军, 牟川. 高石梯—磨溪地区灯影组多次波控制因素及预测方法[J]. 岩性油气藏, 2020, 32(4): 89-97.
[10] 何健, 武刚, 聂文亮, 刘松鸣, 黄伟. 基于近似支持向量机的裂缝分类方法[J]. 岩性油气藏, 2020, 32(2): 115-121.
[11] 宋宣毅, 刘月田, 马晶, 王俊强, 孔祥明, 任兴南. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏, 2020, 32(2): 134-140.
[12] 赵万金, 高海燕, 闫国亮, 郭同翠. 基于最优化估算和贝叶斯统计的TOC预测技术[J]. 岩性油气藏, 2020, 32(1): 86-93.
[13] 丁燕, 杜启振, 刘力辉, 符力耘, 冷雪梅, 刘子煊. 基于纵横波同步联合的孔隙模量三参数AVO反演方法[J]. 岩性油气藏, 2020, 32(1): 111-119.
[14] 李新豫, 张静, 包世海, 张连群, 朱其亮, 闫海军, 陈胜. 川中地区须二段气藏地震预测陷阱分析及对策——以龙女寺区块为例[J]. 岩性油气藏, 2020, 32(1): 120-127.
[15] 刁瑞. 地震数据提高分辨率处理监控评价技术[J]. 岩性油气藏, 2020, 32(1): 94-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .