岩性油气藏 ›› 2023, Vol. 35 ›› Issue (6): 18–28.doi: 10.12108/yxyqc.20230603

• 地质勘探 • 上一篇    下一篇

沙漠区地震数据高分辨率处理关键方法及其在尼日尔Agedem地区的应用

苏勤1,2,3, 曾华会2,3, 徐兴荣2,3, 王德英2,3,4, 孟会杰2   

  1. 1. 电子科技大学 资源与环境学院, 成都 611731;
    2. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    3. 中国石油超深层复杂油气藏勘探开发技术研发中心, 新疆 库尔勒 841000;
    4. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 257061
  • 收稿日期:2023-05-18 修回日期:2023-06-09 出版日期:2023-11-01 发布日期:2023-11-07
  • 第一作者:苏勤(1976—),男,硕士,教授级高级工程师,主要从事地震资料高分辨率处理、速度建模及偏移成像等领域的科研及生产工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:suq@petrochina.com.cn。
  • 通信作者: 徐兴荣(1983-),男,硕士,高级工程师,主要从事地震资料处理及地球物理新技术、新方法研究工作。Email:xu_xr@petrochina.com.cn
  • 基金资助:
    中国石油天然气股份有限公司科技重点项目“薄储层全频处理方法研究与目标精细刻画技术攻关试验”(编号:2022KT1503)和中国石油重点项目“The provision of 3D seismic data reprocessing services in block Agadem,Niger”(编号:CNPCNP/10/2021-0091)联合资助

Key techniques of high-resolution processing of desert seismic data and its application in Agedem area,Niger

SU Qin1,2,3, ZENG Huahui2,3, XU Xingrong2,3, WANG Deying2,3,4, MENG Huijie2   

  1. 1. School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    3. Research and Development Center for Exploration and Development Technology of Ultra Deep Complex Oil and Gas Reservoirs, CNPC, Korla 841000, Xinjiang, China;
    4. School of Geosciences, China University of Petroleum(East China), Qingdao 257061, Shandong, China
  • Received:2023-05-18 Revised:2023-06-09 Online:2023-11-01 Published:2023-11-07

摘要: 针对表层沙丘对地震反射波的高频能量吸收衰减严重会导致沙漠区地震资料存在分辨率低、能量弱、频带窄等问题,提出了一种结合微测井约束的近地表叠前Q补偿、叠前深度Q偏移及基于井约束的压缩感知叠后拓频等3种方法的地震资料处理方法,并将该方法在尼日尔Agedem地区进行了测试。研究结果表明:①经微测井约束的Q补偿法处理后,尼日尔Agedem地区地震资料信噪比和分辨率均更高,同相轴更光滑连续,有效信息能量增强,细小结构刻画得更为清晰;频带宽度从35 Hz拓宽至约70 Hz,主频从30 Hz提升至约45 Hz。②Q叠前深度偏移消除了地震波传播过程中由于介质非弹性因素和地层吸收所引起的衰减与频散,保证了成像精度。③基于井约束的压缩感知叠后拓频方法处理后的结果较无井约束拓频处理与井合成记录更为匹配,具有更好的保真性,进一步提升了弱信号能量,恢复了严重吸收衰减效应所造成的能量损失,尼日尔Agedem地区20~40 ms层位位置更准确,在无井约束处理后180 ms处出现的层位假象问题得到解决。④该联合方法在尼日尔Agedem地区的应用取得了较好的效果,处理后的地震资料断层结构清晰、断面波干脆、小断层错段明显容易识别;结合测井数据对DB1井进行井-震标定后,全井段相关系数大于0.92。

关键词: 叠前Q补偿, 叠前深度Q偏移, 压缩感知叠后拓频, 吸收衰减, 高分辨率, 地震波, 尼日尔Agedem地区

Abstract: A seismic data processing method was proposed to address the severe high-frequency energy absorption and attenuation of seismic reflection waves by surface sand dunes,which results in low resolution,weak energy,and narrow frequency bandwidth in seismic data from desert areas. The method combines three approaches:nearsurface pre-stack Q compensation with micro-logging constraints,pre-stack depth Q migration,and post-stack compressive sensing frequency extrapolation based on well constraints. The method was tested on data from Agedem area in Niger. The results show that:(1)After applying the micro-logging constrained Q compensation method,the seismic data from Agedem area in Niger showed higher signal-to-noise ratio,improved resolution,smoother continuous reflection axes,enhanced effective information energy,and clearer depiction of small structures. The frequency bandwidth was expanded from 35 Hz to 70 Hz,and the main frequency increased from 30 Hz to 45 Hz.(2)The Q pre-stack depth migration eliminated the attenuation and dispersion caused by non-elastic factors and formation absorption during seismic wave propagation,ensuring imaging accuracy.(3)The results of compressive sensing frequency extrapolation method based on well-constrained data showed better matching with synthetic well records than that of unconstrained extrapolation processing,resulting in improved fidelity. It further enhanced weak signal energy and recovered the energy loss caused by severe absorption attenuation. The positioning accuracy of the 20-40 ms interval in Agedem area of Niger was improved,and the problem of false horizons at 180 ms after unconstrained processing was resolved.(4)The combined method achieved favorable results in Agedem area of Niger. The processed seismic data exhibited clear fault structures,crisp fault section waves,and easily identifiable small fault segments. After calibration with well logging data of well DB1,the correlation coefficient for the entire well section exceeded 0.92.

Key words: pre-stack Q compensation, pre-stack depth Q migration, post-stack compressive sensing frequency extrapolation, absorption attenuation, high resolution, seismic wave, Agedem area in Niger

中图分类号: 

  • P631.4
[1] 刁瑞.地震数据提高分辨率处理监控评价技术[J].岩性油气藏,2020,32(1):94-101.DIAO Rui.Monitoring and evaluation technology for high resolution processing of seismic data[J].Lithologic Reservoirs,2020,32(1):94-101.
[2] 赵岩,毛宁波,陈旭.基于时频域信噪比的自适应增益限反Q滤波方法[J].岩性油气藏,2021,33(4):85-92.ZHAO Yan,MAO Ningbo,CHEN Xu.Self-adaptive gain-limit inverse Q filtering method based on SNR in time-frequency domain[J].Lithologic Reservoirs,2021,33(4):85-92.
[3] 赵岩,毛宁波.基于零偏移距VSP的时变子波反褶积方法[J].岩性油气藏,2019,31(6):88-94.ZHAO Yan,MAO Ningbo.Time-varying wavelet deconvolution method based on zero-offset VSP data[J].Lithologic Reservoirs,2019,31(6):88-94.
[4] WANG Yanghua.A stable and efficient approach to inverse Qfiltering[J].Geophysics,2002,67(2):657-663.
[5] 王晓涛,蒋立,薛为平,等.准噶尔盆地厚沙漠区表层实测Q采集及计算方法研究[R].宜昌:中国石油学会2015年物探技术研讨会,2015.WANG Xiaotao,JIANG Li,XUE Weiping,et al.Research of measured Q calculation in thick desert area of Junggar Basin[R].Yichang:2015 Geophysical Exploration Technology Seminar of Chinese Petroleum Society,2015.
[6] 蒋立,罗勇,程志国,等.地表一致性表层相对Q计算及补偿方法研究与应用[J].新疆地质,2015,33(3):415-420.JIANG Li,LUO Yong,CHENG Zhiguo,et al.Research and application of surface-consistent relative Q calculation and compensation[J].Xinjiang Geology,2015,33(3):415-420.
[7] 宋吉杰,禹金营,王成,等.近地表介质Q估计及其在塔河北部油田的应用[J].石油物探,2018,57(3):436-442.SONG Jijie,YU Jinying,WANG Cheng,et al.Q estimation for near-surface media and its application in the northern Tahe Oilfield,China[J].Geophysical Prospecting for Petroleum,2018,57(3):436-442.
[8] 李伟娜,云美厚,党鹏飞,等.基于微测井资料的双线性回归稳定Q估计[J].石油物探,2017,56(4):483-490.LI Weina,YUN Meihou,DANG Pengfei,et al.Stability Q estimation by dual liner regression based on unhole survey data[J].Geophysical Prospecting for Petroleum,2017,56(4):483-490.
[9] 韩立国,张莹,韩利,等.基于压缩感知和稀疏反演的地震数据低频补偿[J],吉林大学学报(地球科学版),2012,42(增刊3):259-264.HAN Liguo,ZHANG Ying,HAN Li,et al.Compressed sensing and sparse inversion based low-frequency information compensation of seismic data[J].Journal of Jilin University(Earth Science Edition),2012,42(Suppl 3):259-264.
[10] 张莹,基于压缩感知和稀疏反演的低频补偿研究[D].长春:吉林大学,2013.ZHANG Ying.A Study on low-frequency compensation based on compressed sensing and sparse inversion[D].Changchun:Jilin University,2013.
[11] SUN Miaomiao,LI Zhenchun,LIU Yanli,et al.Low-frequency expansion approach for seismic data based on compressed sensing in low SNR[J].Applied Sciences,2021,11(11):5028.
[12] 苏勤,曾华会,田彦灿,等.表层Q值确定性求取与空变补偿方法[J].石油地球物理勘探,2019,54(5):988-996.SU Qin,ZENG Huahui,TIAN Yancan,et al.Near-surface Q value estimation and quantitative amplitude compensation[J].Oil Geophysical Prospecting,2019,54(5):988-996.
[13] 凌云,高军,吴琳.时频空间域球面发散与吸收补偿[J].石油地球物理勘探,2005,40(2):176-182.LING Yun,GAO Jun,WU Lin.Compensation for spherical dispersion and absorption in time-frequency-space domain[J].Oil Geophysical Prospecting,2005,40(2):176-182.
[14] 蒋立,陈勇,肖艳玲,等.地表过渡带近地表Q补偿与地表一致性反褶积处理效果对比研究[J].石油物探,2018,57(6):870-877.JIANG Li,CHEN Yong,XIAO Yanling,et al.A comparison of near-surface Q compensation and surface-consistent deconvolution in the near-surface transition zone[J].Geophysical Prospecting for Petroleum,2018,57(6):870-877.
[15] BARANIUK R,DAVENPORT M,DEVORE R,et al.A simple proof of the restricted isometry property for random matrices[J].Constructive Approximation,2007,28(3):253-263.
[16] KIRACHAIWANICH D,LIANG Qilian.Compressive sensing:To compress or not to compress[R].Pacific Grove,CA,USA:Proceedings of the Forty-Fifth Asilomar Conference on Signals,Systems and Computers(ASILOMAR),2011.
[17] HERRMANN F J,HENNENFENT G.Non-parametric seismic data recovery with curvelet frames[J].Geophysical Journal International,2008,173(1):233-248.
[18] TROPP J A,GILBERT A C.Signal recovery from partial information via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[19] DAVENPORT M A,NEEDELL D,WAKIN M B.Signal space CoSaMP for sparse recovery with redundant dictionaries[J].IEEE Transactions on Information Theory,2013,59(10):6820-6829.
[20] GORODNITSKI I F,RAO B D.Sparse signal reconstruction from limited data using FOCUSS:A re-weighted norm minimization algorithm[J].IEEE Transactions on Signal Processing,1997,45(3):600-616.
[21] MOSHTAGHPOUR A,JACQUES L,CAMBARERI V,et al.Consistent basis pursuit for signal and matrix estimates in quantized compressed sensing[J].IEEE Signal Processing Letters,2016,23(1):25-29.
[1] 李娟, 郑茜, 孙松领, 张斌, 陈广坡, 何巍巍, 韩乾凤. 应用测井储层因子预测变质碎屑岩裂缝-孔隙型储层——以海拉尔盆地贝尔凹陷基岩为例[J]. 岩性油气藏, 2021, 33(6): 165-176.
[2] 赵岩, 毛宁波, 陈旭. 基于时频域信噪比的自适应增益限反Q滤波方法[J]. 岩性油气藏, 2021, 33(4): 85-92.
[3] 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112.
[4] 刁瑞. 地震数据提高分辨率处理监控评价技术[J]. 岩性油气藏, 2020, 32(1): 94-101.
[5] 李亚哲, 王力宝, 郭华军, 单祥, 邹志文, 窦洋. 基于地震波形指示反演的砂砾岩储层预测——以中拐-玛南地区上乌尔禾组为例[J]. 岩性油气藏, 2019, 31(2): 134-142.
[6] 杨应, 杨巍, 朱仕军. 基于EEMD的高分辨率层序地层划分方法[J]. 岩性油气藏, 2018, 30(5): 59-67.
[7] 杨占龙, 肖冬生, 周隶华, 黄云峰, 黄小鹏, 沙雪梅. 高分辨率层序格架下的陆相湖盆精细沉积体系研究——以吐哈盆地西缘侏罗系—古近系为例[J]. 岩性油气藏, 2017, 29(5): 1-10.
[8] 李晨, 樊太亮, 高志前, 钱小会, 傅巍. 冲积扇高分辨率层序地层分析——以辽河坳陷曙一区杜84块SAGD开发区馆陶组为例[J]. 岩性油气藏, 2017, 29(3): 66-75.
[9] 孟 昊,钟大康,朱筱敏,刘自亮,廖纪佳,张修强 . 鄂尔多斯盆地陇东地区延长组 LSC3 层序格架与沉积相[J]. 岩性油气藏, 2016, 28(1): 77-87.
[10] 明 君,刘力辉,丁 燕,李 聪. 基于 CRP 道集的频宽一致性子波反褶积技术[J]. 岩性油气藏, 2015, 27(6): 97-103.
[11] 崔宏良, 刘占军, 万学娟, 王泽丹, 程展展, 张学银. 拟合 Q 体建模技术及应用[J]. 岩性油气藏, 2015, 27(3): 94-97.
[12] 陈可洋,陈树民,李来林,吴清岭,范兴才,刘振宽. 地震波动方程方向行波波场分离正演数值模拟与逆时成像[J]. 岩性油气藏, 2014, 26(4): 130-136.
[13] 陈可洋,吴清岭,范兴才,陈树民,李来林,刘振宽. 地震波逆时偏移中不同域共成像点道集偏移噪声分析[J]. 岩性油气藏, 2014, 26(2): 118-124.
[14] 李国栋,白卫卫,孙金磊,黄玉燕. 扇三角洲岩性油气藏储层描述技术研究———以营子街地区为例[J]. 岩性油气藏, 2013, 25(2): 55-59.
[15] 刘小亮,王超勇. 川中潼南地区须家河组二段高分辨率层序地层学研究[J]. 岩性油气藏, 2013, 25(1): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .