岩性油气藏 ›› 2023, Vol. 35 ›› Issue (4): 70–78.doi: 10.12108/yxyqc.20230407

• 地质勘探 • 上一篇    下一篇

一种基于压缩感知理论的强反射地震信号消减方法

李胜军1, 高建虎1, 张繁昌2, 贺东阳1, 桂金咏1   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 中国石油大学 (华东)地球科学与技术学院, 山东 青岛 266580
  • 收稿日期:2022-10-08 修回日期:2022-12-04 出版日期:2023-07-01 发布日期:2023-07-01
  • 第一作者:李胜军(1979-),男,博士,高级工程师,主要从事地震波传播理论与储层预测方法研究。地址:(730020) 甘肃省兰州市城关区雁儿湾路535号。Email:li_sj@petrochina.com.cn。
  • 基金资助:
    中国石油股份公司前瞻性基础性战略性技术攻关项目“复杂气藏地震识别与预测技术研究”(编号:2021DJ0606)与中国石油勘探生产分公司科技项目“薄储层全频处理方法研究与目标精细刻画技术攻关实验”(编号:2022KT1503)联合资助。

A strong seismic energy reduction method under compressed sensing

LI Shengjun1, GAO Jianhu1, ZHANG Fanchang2, HE Dongyang1, GUI Jinyong1   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    2. School of Geosciences, China University of Petroleum(East China), Qingdao 266580, Shandong, China
  • Received:2022-10-08 Revised:2022-12-04 Online:2023-07-01 Published:2023-07-01

摘要: 基于压缩感知理论,根据强、弱反射之间子波干涉机理,提出了逼近任意强反射波形的动态字典强反射分解方法和基于屏蔽函数的强反射消减方法。利用数值模型和强反射波形横向变化大的物理模型验证了该方法的有效性,并在川中古隆起构造带中部二叠系茅口组二段进行了实际应用。研究结果表明: ①相比常规去强反射方法,基于屏蔽函数的强反射消减方法处理后,地震同相轴横向连续性更好,强反射同相轴消减得更彻底,被强反射屏蔽的块状砂体弱反射突显出来,同时该方法对层位的依赖低,不需要准确的强反射层位数据,可将时窗范围内的强反射一次处理完成。②基于屏蔽函数的强反射消减方法在砂体与强反射层距离小于λ(波长)且大于λ/4时,消除效果较好,强反射可完全去除,弱反射完全显现;当砂体与强反射层距离小于λ/4时,消除效果较差,砂体与强反射层距离越小(小于λ/8时),效果越差。③该方法在川中古隆起构造带中部二叠系茅口组二段应用效果较好,储层距离强放射层小于λ/4的井区,储层弱反射得以显现,储层距离强放射层大于1/4波长的井区,储层响应得到增强。

关键词: 强反射消减, 地震信号分解, 压缩感知, 屏蔽函数, 动态字典, 信号增强, 储层预测

Abstract: Based on the compressive sensing(CS)theory and the wavelet interference mechanism between strong and weak reflections,a dynamic dictionary strong reflection decomposition method by approximating arbitrary strong reflection waveforms and a strong reflection reduction method based on shielding function were proposed. The validity of the methods was verified using numerical models and physical models with large lateral variations of strongly reflected waveforms. The methods have been practically applied in the second member of Permian Maokou Formation in the central uplift tectonic zone of central Sichuan Basin. The results show that:(1)Compared with the conventional de-strong reflection method,the strong reflection reduction method based on shielding function has better lateral continuity of the seismic event,the strong reflection event is more thoroughly reduced, and the weak reflection of the blocky sand body shielded by the strong reflection is revealed. At the same time, the method has low dependence on the horizon and can process the strong reflection within the time window at one time without accurate strong reflection horizon data.(2)The strong reflection reduction method based on shielding function has a better elimination effect when the distance between the sand body and the strong reflection layer is less than λ(wavelength)and greater than λ/4. The strong reflection can be completely removed and the weak reflection is completely revealed. When the distance between the sand body and the strong reflection layer is less than λ/4,the elimination effect is poor. When the distance between the sand body and the strong reflection layer is less than λ/8,the elimination effect is worse.(3)This method is better applied in the second member of Permian Maokou Formation in the central uplift tectonic zone of central Sichuan Basin. The weak reflection of the reservoir is revealed when the distance between the reservoir and the strong reflection layer is less than λ/4. The reservoir response is enhanced when the distance between the reservoir and the strong reflection layer is greater than λ/4.

Key words: strong reflection reduction, seismic signal decomposition, compressed sensing, shielding function, dynamic dictionary, signal enhancement, reservoir prediction

中图分类号: 

  • TE319
[1] 符志国,李忠,赵尧,等.薄砂岩储层多波叠后地震反射特征分析及应用[J].石油地球物理勘探, 2017, 52(5):1016-1024. FU Zhiguo, LI Zhong, ZHAO Yao, et al. Post-stack multi-wave reflection characteristics of thin sand reservoirs[J]. Oil Geophysical Prospecting, 2017, 52(5):1016-1024.
[2] 张在金,张军华,李军,等.煤系地层地震强反射剥离方法研究及低频伴影分析[J].石油地球物理勘探, 2016, 51(2):376-383. ZHANG Zaijin, ZHANG Junhua, LI Jun, et al. A method for stripping coal seam strong reflection and low-frequency shadow analysis[J]. Oil Geophysical Prospecting, 2016, 51(2):376-383.
[3] 刘化清,刘宗堡,吴孔友,等.岩性地层油气藏区带及圈闭评价技术研究新进展[J].岩性油气藏, 2021, 33(1):25-36. LIU Huaqing, LIU Zongbao, WU Kongyou, et al. New progress in study of play and trap evaluation technology for lithostratigraphic reservoirs[J]. Lithologic Reservoirs, 2021, 33(1):25-36.
[4] 谢占安,周锦明.提高隐蔽油气藏勘探能力的新思路[J].石油地球物理勘探, 2005, 40(5):609-615. XIE Zhan'an, ZHOU Jinming. New ideas improving capability of subtle oil/gas reservoir exploration[J]. Oil Geophysical Prospecting, 2005, 40(5):609-615.
[5] 李胜军,高建虎,雍学善,等.小尺度体反射技术近似公式研究[J].岩性油气藏, 2014, 26(1):96-99. LI Shengjun, GAO Jianhu, YONG Xueshan, et al. Approximate formula of reflection coefficient for small-scale body[J]. Lithologic Reservoirs, 2014, 26(1):96-99.
[6] 李胜军,刘伟方,高建虎.正演模拟技术在碳酸盐岩溶洞响应特征研究中的应用[J].岩性油气藏, 2011, 23(4):106-109. LI Shengjun, LIU Weifang, GAO Jianhu. Application of forward modeling to research of carbonate cave response[J]. Lithologic Reservoirs, 2011, 23(4):106-109.
[7] 汪恩华.相似地震背景分离提高分辨率处理方法与效果[C].北京:CPS/SEG国际地球物理会议, 2004:255-257. WANG Enhua. Resolution enhancement method based on similar seismic background separation technique[C]. Beijing:CPS/SEG International Geophysical Meeting, 2004:255-257.
[8] 赵铭海.地震相似背景分离技术在东营凹陷的应用[J].油气地质与采收率, 2004, 11(4):25-27. ZHAO Minghai. Application of separation technique in seismic similar background to Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2004, 11(4):25-27.
[9] 张军华,刘振,刘炳杨,等.强屏蔽层下弱反射储层特征分析及识别方法[J].特种油气藏, 2012, 19(1):23-26. ZHANG Junhua, LIU Zhen, LIU Bingyang, et al. Analysis and identification of reservoirs characteristics of weak reflectors under strong shielding layer[J]. Special Oil and Gas Reservoirs, 2012, 19(1):23-26.
[10] 金成志,秦月霜.利用长、短旋回波形分析法去除地震强屏蔽[J].石油地球物理勘探, 2017, 52(5):1042-1048. JIN Chengzhi, QIN Yueshuang. Seismic strong shield removal based on the long and short cycle analysis[J]. Oil Geophysical Prospecting, 2017, 52(5):1042-1048.
[11] 王宝江,张永常,王大兴,等.广义S变换用于含煤地层薄砂体预测研究[J].地球物理学进展, 2012, 27(3):1219-1226. WANG Baojiang, ZHANG Yongchang, WANG Daxing, et al. Predicting and detecting of the thin sand bodies by general transform in coal-bearing strata[J]. Progress in Geophysics, 2012, 27(3):1219-1226.
[12] 王大兴,王永刚,赵玉华,等.一种地震强反射振幅消除方法在鄂尔多斯盆地的试验[C].北京:SPG/SEG北京国际地球物理会议, 2016. WANG Daxing, WANG Yonggang, ZHAO Yuhua, et al. A seismic strong reflection amplitude suppressing method applied in the Ordos Basin[C]. Beijing:SPG/SEG Beijing International Geophysical Conference, 2016.
[13] 谢春临,黄伟,关晓巍,等.波形分解技术在强反射背景下薄砂层识别中的应用[J].石油地球物理勘探, 2017, 52(3):516-520. XIE Chunlin, HUANG Wei, GUAN Xiaowei, et al. Thin sand identification under strong reflection with volume-based waveform decomposition[J]. Oil Geophysical Prospecting, 2017, 52(3):516-520.
[14] WANG Yanghua. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics, 2007, 72(1):13-20.
[15] WANG Yanghua. Multichannel matching pursuit for seismic trace decomposition[J]. Geophysics, 2010, 75(4):61-66.
[16] 李海山,杨午阳,田军,等.匹配追踪煤层强反射分离方法[J].石油地球物理勘探, 2014, 49(5):866-870. LI Haishan, YANG Wuyang, TIAN Jun, et al. Coal seam strong reflection separation with matching pursuit[J]. Oil Geophysical Prospecting, 2014, 49(5):866-870.
[17] 许璐,吴笑荷,张明振,等.基于局部频率约束的动态匹配追踪强反射识别与分离方法[J].石油地球物理勘探, 2019, 54(3):587-593. XU Lu, WU Xiaohe, ZHANG Mingzhen, et al. Strong reflection identification and separation based on the local-frequencyconstrained dynamic matching pursuit[J]. Oil Geophysical Prospecting, 2019, 54(3):587-593.
[18] 杨子鹏,宋维琪,刘军,等.多道联合约束的匹配追踪强反射轴压制方法[J].石油地球物理勘探, 2021, 56(1):77-85. YANG Zipeng, SONG Weiqi, LIU Jun, et al. A method of combining multi-channel signals to suppress the strong reflection through matching pursuit[J]. Oil Geophysical Prospecting, 2021, 56(1):77-85.
[19] 张生强,张志军,李尧,等.基于地震相位分解的自适应强反射分离方法[J].石油地球物理勘探, 2021, 56(6):1236-1243. ZHANG Shengqiang, ZHANG Zhijun, LI Yao, et al. Adaptive strong reflection separation method based on seismic phase decomposition[J]. Oil Geophysical Prospecting, 2021, 56(6):1236-1243.
[20] DONOHO D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59:797-829.
[21] YUAN Sanyi, WANG Shangxu, MA Ming, et al. Sparse Bayesian learning-based time-variant deconvolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6182-6194.
[22] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[23] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing, 2008, 25(2):21-30.
[24] 张繁昌,兰南英,李传辉,等.地震匹配追踪技术与应用研究进展[J].石油物探, 2020, 59(4):491-504. ZHANG Fanchang, LAN Nanying, LI Chuanhui, et al. A review on seismic matching pursuit[J]. Geophysical Prospecting for Petroleum, 2020, 59(4):491-504.
[25] ZHANG Fanchang, LAN Nanying. Seismic-gather wavelet-stretching correction based on multiwavelet decomposition algorithm[J]. Geophysics, 2020, 85(5):377-384.
[26] 张繁昌,刘汉卿,代荣获.基于Ricker子波的指数追踪地震信号分解算法[J].中国矿业大学学报, 2016, 45(1):128-132. ZHANG Fanchang, LIU Hanqing, DAI Ronghuo. Exponential pursuit algorithm based on Ricker wavelet for seismic signal decomposition[J]. Journal of China University of Mining and Technology, 2016, 45(1):128-132.
[27] LI Shengjun, WANG Tieyi, GAO Jianhu, et al. Lp norm inverse spectral decomposition and its multi-sparsity fusion interpretation[J]. Applied Geophysics, 2021, 18(4):569-578.
[28] 刘百红,李建华,郑四连.应用近似L0范数的稀疏脉冲反演[J].石油地球物理勘探, 2018, 53(5):961-968. LIU Baihong, LI Jianhua, ZHENG Silian. Seismic sparse spike inversion based on L 0 norm approximation[J]. Oil Geophysical Prospecting, 2018, 53(5):961-968.
[29] 张军华.信号分析与处理[M].北京:中国石油大学出版社, 2020. ZHANG Junhua. Signal analysis and processing[M]. Beijing:China University of Petroleum Press, 2020.
[30] 李珊珊,姜鹏飞,刘磊,等.四川盆地高磨地区寒武系沧浪铺组碳酸盐岩颗粒滩地震响应特征及展布规律[J].岩性油气藏, 2022, 34(4):22-31. LI Shanshan, JIANG Pengfei, LIU Lei, et al. Seismic response characteristics and distribution law of carbonate shoals of Cambrian Canglangpu Formation in Gaoshiti-Moxi area, Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(4):22-31.
[1] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[2] 何文渊, 陈可洋. 哈萨克斯坦南图尔盖盆地Doshan斜坡带岩性油气藏储层预测方法[J]. 岩性油气藏, 2024, 36(4): 1-11.
[3] 李毕松, 苏建龙, 蒲勇, 缪志伟, 张文军, 肖伟, 张雷, 江馀. 四川盆地元坝地区二叠系茅口组相控岩溶刻画及预测[J]. 岩性油气藏, 2024, 36(1): 69-77.
[4] 苏勤, 曾华会, 徐兴荣, 王德英, 孟会杰. 沙漠区地震数据高分辨率处理关键方法及其在尼日尔Agedem地区的应用[J]. 岩性油气藏, 2023, 35(6): 18-28.
[5] 张昌民, 张祥辉, 朱锐, 冯文杰, 尹太举, 尹艳树, Adrian J. HARTLEY. 分支河流体系研究进展及应用前景展望[J]. 岩性油气藏, 2023, 35(5): 11-25.
[6] 张闻亭, 龙礼文, 肖文华, 魏浩元, 李铁锋, 董震宇. 酒泉盆地青西凹陷窟窿山构造带下沟组沉积特征及储层预测[J]. 岩性油气藏, 2021, 33(1): 186-197.
[7] 孙夕平, 张昕, 李璇, 韩永科, 王春明, 魏军, 胡英, 徐光成, 张明, 戴晓峰. 基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J]. 岩性油气藏, 2021, 33(1): 220-228.
[8] 曹思佳, 孙增玖, 党虎强, 曹帅, 刘冬民, 胡少华. 致密油薄砂体储层预测技术及应用实效——以松辽盆地敖南区块下白垩统泉头组为例[J]. 岩性油气藏, 2021, 33(1): 239-247.
[9] 吴青鹏, 吕锡敏, 陈娟, 周在华, 袁成. 酒泉盆地营尔凹陷下白垩统下沟组沉积特征及勘探方向[J]. 岩性油气藏, 2020, 32(5): 54-62.
[10] 罗泽, 谢明英, 涂志勇, 卫喜辉, 陈一鸣. 一套针对高泥质疏松砂岩薄储层的识别技术——以珠江口盆地X油田为例[J]. 岩性油气藏, 2019, 31(6): 95-101.
[11] 张云银, 魏欣伟, 谭明友, 高秋菊, 朱定蓉, 林述喜. 基于压缩感知技术的去除强屏蔽研究及应用[J]. 岩性油气藏, 2019, 31(4): 85-91.
[12] 周华建. 基于叠前OVT域偏移的河道砂体预测方法[J]. 岩性油气藏, 2019, 31(4): 112-120.
[13] 石战战, 王元君, 唐湘蓉, 庞溯, 池跃龙. 一种基于时频域波形分类的储层预测方法[J]. 岩性油气藏, 2018, 30(4): 98-104.
[14] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133-139.
[15] 武爱俊, 徐建永, 滕彬彬, 肖伶俐, 康波, 李凡异, 印斌浩. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4): 55-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .