岩性油气藏 ›› 2015, Vol. 27 ›› Issue (4): 109–112.doi: 10.3969/j.issn.1673-8926.2015.04.016

• 油气田开发 • 上一篇    下一篇

考虑应力敏感和吸附的页岩表观渗透率模型

郭 肖1,任 影1,吴红琴2   

  1.  1. 西南石油大学 油气藏地质及开发工程国家重点实验室,成都 610500 ;2. 中国石化西南石油工程公司 钻井工程研究院,四川 德阳 618000
  • 出版日期:2015-07-20 发布日期:2015-07-20
  • 作者简介:郭肖( 1972- ),男,博士,教授,主要从事复杂油气藏渗流与数值模拟方面的教学与科研工作。 地址:( 610500 )四川省成都市新都区西南石油大学油气藏地质及开发工程国家重点实验室。 E-mail : guoxiao72@163.com 。
  • 基金资助:

    国家重点基础研究发展计划( 973 )项目“中国南方海相页岩气高效开发的基础研究”(编号: 2013CB228002 )资助

Apparent permeability model of shale gas considering stress sensitivity and adsorption

Guo Xiao1, Ren Ying1, Wu Hongqin2   

  1.  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University ,Chengdu 610500 , China ; 2. Research Institute of Drilling Engineering , Sinopec Southwest Petroleum Engineering Company , Deyang 618000 , Sichuan , China
  • Online:2015-07-20 Published:2015-07-20

摘要:

页岩气流动存在明显的多尺度效应,而应力敏感和吸附现象的存在使得页岩气的渗流机理更为复杂。 基于 Beskok-Karniandakis 模型,推导了考虑应力敏感和吸附的页岩表观渗透率计算模型。利用该模型进行计算并分析了应力敏感和吸附对页岩表观渗透率的影响。 当页岩孔隙半径大于 5 nm 时,应力敏感对表观渗透率的影响占主要地位,应力敏感和吸附综合作用下的页岩表观渗透率随压力降低呈先降后升的趋势;当孔隙半径小于 5 nm 时,应力敏感导致的渗透率损失要小于气体解吸和滑脱引起的渗透率增大,页岩表观渗透率随压力降低而增大。

关键词: 致密储层, 优质储层, 成因机制, 白云石化, BZ-A-1 井区, 黄河口凹陷

Abstract:

Multi-scale flow is observed obviously in the shale gas reservoir, and stress sensitivity and adsorption also make the flow mechanism of shale gas more complex. A corrected apparent permeability model considering the two factors is derived based on the Beskok-Karniandakis model. The effects of stress sensitivity and adsorption on shale gas apparent permeability were analyzed by using the new model. The following results were achieved in the calculation and analyses of the model: when the pore radius is over 5 nm, the apparent permeability declines and then goes up with the pressure drops down under the influence of the stress sensitivity together with the adsorption; when the pore radius is less than 5 nm, the permeability loss caused by the stress sensitivity is less than the permeability increase created by adsorption and slippage, thus the apparent permeability presents an upward trend with the pressure drops down.

Key words: tightreservoir, high-quality reservoirs, genetic mechanism, dolomitization, BZ-A-1 well field, Huanghekou Sag

[ 1 ] 张小龙,张同伟,李艳芳,等 . 页岩气勘探和开发进展综述[ J ] . 岩性油气藏, 2013 , 25 ( 2 ): 116-122.

Zhang Xiaolong , Zhang Tongwei , Li Yanfang , et al. Research advance in exploration and development of shale gas [ J ] . Lithologic Reservoirs , 2013 , 25 ( 2 ):116-122.

[ 2 ] 何建华,丁文龙,付景龙,等 . 页岩微观孔隙成因类型研究[ J ] . 岩性油气藏, 2014 , 26 ( 5 ): 30-35.

He Jianhua , Ding Wenlong , Fu Jinglong , et al. Study on genetic type of micropore in shale reservoir [ J ] . Lithologic Reservoirs , 2014 , 26( 5 ): 30-35.

[ 3 ] 徐祖新 . 基于 CT 扫描图像的页岩储层非均质性研究[ J ] . 岩性油气藏, 2014 , 26 ( 6 ): 46-49.

Xu Zuxin. Heterogeneity of shale reservoirs based on CT images [ J ] . Lithologic Reservoirs , 2014 , 26 ( 6 ): 46-49.

[ 4 ] 姜瑞忠,汪洋,贾俊飞,等 . 页岩储层基质和裂缝渗透率新模型研究[ J ] . 天然气地球科学, 2014 , 25 ( 6 ): 934-939.

Jiang Ruizhong , Wang Yang , Jia Junfei , et al. The new model for matrix and fracture permeability in shale reservior [ J ] . Natural Gas Geoscience , 2014 , 25 ( 6 ): 934-939.

[ 5 ] 于荣泽,张晓伟,卞亚南,等 . 页岩气藏流动机理与产能影响因素分析[ J ] . 天然气工业, 2012 , 32 ( 9 ): 10-15.

Yu Rongze , Zhang Xiaowei , Bian Yanan , et al. Flow mechanism of shale gas reservoirs and influential factors of their productivity [ J ] . Natural Gas Industry , 2012 , 32 ( 9 ): 10-15.

[ 6 ] 李勇明,姚锋盛,赵金洲,等 . 页岩气藏纳米孔隙微观渗流动态研究[ J ] . 科学技术与工程, 2013 , 13 ( 10 ): 2657-2661.

Li Yongming , Yao Fengsheng , Zhao Jinzhou , et al. Shale gas reservoir nanometer-pore microscopic seepage dynamic research [ J ] . Science Technology and Engineering , 2013 , 13 ( 10 ): 2657-2661.

[ 7 ] 朱维耀,马千,邓佳,等 . 纳微米级孔隙气体流动数学模型及应用[ J ] . 北京科技大学学报, 2014 , 36 ( 6 ): 709-715.

Zhu Weiyao , Ma Qian , Deng Jia , et al. Mathematical model and application of gas flow in nano-micron pores [ J ] . Journal of University of Science and Technology Beijing , 2014 , 36 ( 6 ): 709-715.


[ 8 ] Wang F P , Reed R M , John A. Pore networks and fluid flow in gas shales [ R ] . SPE 124253 , 2009.

[ 9 ] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks ( shales and siltstone )[ J ] . Journal of Canadian Petroleum Technology , 2009 , 48 ( 8 ): 16-21.

[ 10 ] Beskok A , Karniadakis G E. A model for flow in channels , pipes ,and ducts at micro and nanoscales [ J ] . Microscale Thermophysical Engineering , 1999 , 3 ( 1 ): 4377.

[ 11 ] 郭为,熊伟,高树生,等 . 页岩纳米级孔隙气体流动特征[ J ] . 石油钻采工艺, 2012 , 34 ( 6 ): 57-60.

Guo Wei , Xiong Wei , Gao Shusheng , et al. Gas flow characteristics in shales nanopores [ J ] . Oil Drilling and Production Technology ,2012 , 34 ( 6 ): 57-60.

[ 12 ] 李治平,李智锋 . 页岩气纳米级孔隙渗流动态特征[ J ] . 天然气工业, 2012 , 32 ( 4 ): 50-53.

Li Zhiping , Li Zhifeng. Dynamic characteristics of shale gas flow in nanoscale pores [ J ] . Natural Gas Industry , 2012 , 32 ( 4 ): 50-53.

[ 13 ] Bustin A , Bustin R , Cui X. Importance of fabric on the production of gas shales [ R ] . SPE 114167 , 2008.

[ 14 ] 张睿,宁正福,杨峰,等 . 微观孔隙结构对页岩应力敏感影响的实验研究[ J ] . 天然气地球科学, 2014 , 25 ( 8 ): 1284-1289.

Zhang Rui , Ning Zhengfu , Yang Feng , et al. Experimental study on microscopic pore structure controls on shale permeability under compaction process [ J ] . Natural Gas Geoscience , 2014 , 25 ( 8 ):1284-1289.

[ 15 ] Faruk C , Chandra S , Rai C. Shale gas permeability and diffusivity inferred by improved formulation of relevant retentionand transport mechanisms [ J ] . Transp Porous Med , 2011 , 86 : 925-944.

[ 16 ] 姜瑞忠,汪洋,刘海成,等 . 页岩气生产机理及影响因素分析[ J ] . 特种油气藏, 2014 , 24 ( 1 ): 84-87.

Jiang Ruizhong , Wang Yang , Liu Haicheng , et al. Shale gas production mechanism and analysis of affecting factors [ J ] . Special Oil and Gas Reserviors , 2014 , 24 ( 1 ): 84-87.

[ 17 ] Guo C , Wei M. Improved numerical simulation for shale gas reservoir [ R ] . OTC-24913-MS , 2014.

[1] 覃阳亮, 何幼斌, 蔡俊, 李华, 张灿, 刘建宁. 东非海岸Davie构造带的构造演化特征及其成因机制[J]. 岩性油气藏, 2021, 33(2): 104-115.
[2] 徐子煜, 王安, 韩长城, 田继军, 张军生, 刘磊, 张楠. 玛湖地区三叠系克拉玛依组优质砂砾岩储层形成机制[J]. 岩性油气藏, 2020, 32(3): 82-92.
[3] 庞小军, 王清斌, 解婷, 赵梦, 冯冲. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏, 2020, 32(2): 1-13.
[4] 杨帆, 刘立峰, 冉启全, 孔金平, 黄苏琦, 黄昌武. 四川盆地磨溪地区灯四段风化壳岩溶储层特征[J]. 岩性油气藏, 2020, 32(2): 43-53.
[5] 刘秀婵, 陈西泮, 刘伟, 王霞. 致密砂岩油藏动态渗吸驱油效果影响因素及应用[J]. 岩性油气藏, 2019, 31(5): 114-120.
[6] 安杰, 唐梅荣, 曹宗熊, 王文雄, 陈文斌, 吴顺林. 超低渗透低压油藏水平井转变开发方式试验[J]. 岩性油气藏, 2019, 31(5): 134-140.
[7] 刘冬冬, 杨东旭, 张子亚, 张晨, 罗群, 潘占昆, 黄治鑫. 基于常规测井和成像测井的致密储层裂缝识别方法——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2019, 31(3): 76-85.
[8] 苏皓, 雷征东, 张荻萩, 李俊超, 鞠斌山, 张泽人. 致密油藏体积压裂水平井参数优化研究[J]. 岩性油气藏, 2018, 30(4): 140-148.
[9] 王伟, 吴奎, 何京, 张金辉, 沈洪涛. 锦州25-1油田优质储层地震响应特征与定量预测[J]. 岩性油气藏, 2018, 30(3): 100-111.
[10] 刘曦翔, 张哨楠, 杨鹏, 张咏梅, 何昊. 龙凤山地区营城组深层优质储层形成机理[J]. 岩性油气藏, 2017, 29(2): 117-124.
[11] 周游, 李治平, 景成, 谷潇雨, 孙威, 李晓. 基于“岩石物理相-流动单元”测井响应定量评价特低渗透油藏优质储层——以延长油田东部油区长6油层组为例[J]. 岩性油气藏, 2017, 29(1): 116-123.
[12] 汪洋,李树同,牟炜卫,闫灿灿. 姬塬西部地区长81致密储层特征及孔隙度演化分析[J]. 岩性油气藏, 2016, 28(4): 59-66.
[13] 赵达,许浩,汪雷,汤达祯,孟尚志,李玲. 临兴地区山西组致密砂岩储层特征及成因探讨[J]. 岩性油气藏, 2016, 28(4): 43-50.
[14] 柴 毓,王贵文. 致密砂岩储层岩石物理相分类与优质储层预测—— — 以川中安岳地区须二段储层为例[J]. 岩性油气藏, 2016, 28(3): 74-85.
[15] 王 维,张英波,杨香华,王清斌,朱红涛. 黄河口凹陷 BZ-A-1 井区沙河街组“甜点”特征及成因机制[J]. 岩性油气藏, 2015, 27(5): 45-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .