岩性油气藏 ›› 2023, Vol. 35 ›› Issue (6): 3744.doi: 10.12108/yxyqc.20230605
夏明军, 邵新军, 杨桦, 王忠生, 李之宇, 张超前, 原瑞娥, 法贵方
XIA Mingjun, SHAO Xinjun, YANG Hua, WANG Zhongsheng, LI Zhiyu, ZHANG Chaoqian, YUAN Ruier, FA Guifang
摘要: 为规范海外石油储量评估,提出海外岩性油气藏储量分类分级、岩性边界、含油面积及有效厚度确定的方法。研究结果表明:①海外P类储量一般必须具有公司或资源国政府批准的开发方案。P1储量以具有商业产量或具商业测试流量的井为计算单元,其面积通常由生产井的泄油面积和已知气底或已知油顶与已知油底限定的范围确定。P1储量边界到其与岩性边界一半距离范围内的储量为P2储量;P2储量边界到岩性边界范围内的储量为P3储量,如圈闭内没有或尚不能确定油水界面,则P3储量应以圈闭溢出点来确定;如岩性或储层物性变化较剧烈,P2储量可按P1储量外推1个开发井距确定,P3储量可按P2储量外推1个开发井距确定。②当P类储量井到渗透储层尖灭线的距离不大于3~4倍开发井距时,对于中—高孔渗储层,尖灭线可直接确定为岩性边界;对低孔渗储层,可将达到P类储量标准的最小有效厚度等值线确定为岩性边界。由岩性边界、油气水边界、致密层封堵带等综合圈定含油气面积,面积内的井应达到P类储量标准。已查明流体界面的油气藏,用于圈定含油气面积的流体界面应经钻井取心资料或测试资料证实;未查明流体界面的油气藏,应以测试证实的最低的出油气层底界或有效厚度值外推圈定含油气面积。③ P1储量有效厚度的确定应具有可靠的地层测试资料或充分的测井资料,并证实其具有一定的生产能力;P2储量有效厚度的确定通常缺乏结论性的测试资料,并且未证实其生产能力;P3储量的有效厚度存在较大的不确定性,因其在岩石物理解释方面存在不确定性。④推荐采用容积法开展岩性油气藏的储量评估,厄瓜多尔TP油田的实例证实了岩性油气藏储量分类分级和储量评估方法的有效性。
中图分类号:
[1] 苏义脑.中国碳达峰碳中和与能源发展战略的认识与思考[J].世界石油工业,2022,29(4):7-11.SU Yinao.Understandings and thinkings of China's carbon peaking,carbon neutrality and energy development strategies[J].World Petroleum Industry,2022,29(4):7-11. [2] 侯梅芳.碳中和目标下中国能源转型和能源安全的现状、挑战与对策[J].西南石油大学学报(自然科学版),2023,45(2):1-10.HOU Meifang. Current situation,challenges and countermeasures of China's energy transformation and energy security under the goal of carbon neutrality[J]. Journal of Southwest Petroleum University(Science&Technology Edition),2023,45(2):1-10. [3] 中国石油勘探开发研究院(RIPED).全球油气勘探开发形势及油公司动态(2021)[M].北京:石油工业出版社,2021.Petro China Research Institute of Petroleum Exploration and Development(RIPED). Global petroleum E&D trends and company dynamics(2021)[M]. Beijing:Petroleum Industry Press,2021. [4] 王建君,张宁宁,窦立荣,等.国际大石油公司油气上游资产并购的主要特点及启示[J].国际石油经济,2022,30(11):100-106.WANG Jianjun,ZHANG Ningning,DOU Lirong,et al. Analysis of upstream merger and acquisition by international oil companies[J]. International Petroleum Economics,2022,30(11):100-106. [5] 窦立荣,王作乾,郜峰,等.跨国油气勘探开发在保障国家能源安全中的作用[J].中国科学院院刊,2023,38(1):59-71.DOU Lirong,WANG Zuoqian,GAO Feng,et al. Role of transnational oil and gas exploration and development in ensuring national energy security[J]. Bulletin of Chinese Academy of Sciences,2023,38(1):59-71. [6] 窦立荣,李大伟,温志新,等.全球油气资源评价历程及展望[J].石油学报,2022,43(8):1035-1048.DOU Lirong,LI Dawei,WEN Zhixin,et al. History and outlook of global oil and gas resources evaluation[J]. Acta Petrolei Sinica,2022,43(8):1035-1048. [7] 查全衡.国内外油气资源分类沿革及启示[J].石油科技论坛,2020,39(4):7-15.ZHA Quanheng. Evolution and enlightenment of domestic and foreign oil and gas resources classification[J].Petroleum Science and Technology Forum,2020,39(4):7-15. [8] 肖玉茹,黄学斌,李姝,等.SPE-PRMS标准油气储量分类体系与我国的差异性探讨及储量管理建议[J].当代石油石化,2019,27(9):37-42.XIAO Yuru,HUANG Xuebin,LI Shu,et al. The difference between SPE-PRMS and China's oil/gas reserves classification and reserve management suggestions[J]. Petroleum&Petrochemical Today,2019,27(9):37-42. [9] 王建,毕海滨.海外油气资产并购中的储量评估研究[J].中国石油勘探,2022,27(3):149-154.WANG Jian,BI Haibin. Research on reserve evaluation in overseas oil and gas asset acquisition[J]. China Petroleum Exploration,2022,27(3):149-154. [10] 李红英,孙静.基于SPE-PRMS准则下的3P储量含油气边界确定方法探讨[J].岩性油气藏,2013,25(4):6-10.LI Hongying,SUN Jing. Determination method of oil-bearing area boundary of the 3P reserves based on SPE-PRMS standard[J]. Lithologic Reservoirs,2013,25(4):6-10. [11] 姜英昆,吴国干,韩征,等.岩性油气藏探明储量计算细则:SY/T 5782—2010[S].北京:石油工业出版社,2010.JIANG Yingkun,WU Guogan,HAN Zheng,et al. Instructions for estimation of proved reserves for lithologic oil and gas reservoir:SY/T 5782—2010[S]. Beijing:Petroleum Industry Press,2010. [12] 李朝霞,夏海容,吕彦平.海外油气储量评估方法研究[J].复杂油气藏,2014,7(2):37-41.LI Zhaoxia,XIA Hairong,LYU Yanping. Study on the evaluation method of overseas oil-gas reserves[J]. Complex Hydrocarbon Reservoirs,2014,7(2):37-41. [13] SPE,WPC,AAPG,SPEE,SEG,SPWLA,EAGE. Petroleum resources management system(PRMS)[R]. Washington,DC:SPE,2018:1-3. [14] 刘合年,杨桦,原瑞娥,等.石油资源管理系统应用指南英文-中文版[R]. SPE,AAPG,WPC,SPEE,SEG,CNODC,RIPED,2019.LIU Henian,YANG Hua,YUAN Ruier,et al. Guidelines for application of the petroleum resources management system English-Chinese Version[R]. SPE,AAPG,WPC,SPEE,SEG,CNODC,RIPED,2019. [15] SPE,AAPG,WPC,SPEE,SEG. Guidelines for application of the petroleum resources management system[R]. Washington,DC:SEC,2011. [16] 马海珍,常毓文,胡勇,等.中国石油海外油气储量规范[R].中国石油国际勘探开发有限公司,2019.MA Haizhen,CHANG Yuwen,HU Yong,et al. Petro China overseas oil and gas reserves standard[R]. China National Oil and Gas Exploration and Development Corporation,2019. [17] 马海珍,赵喆,胡勇,等.中国石油海外油气储量规范应用指南[R].中国石油国际勘探开发有限公司,2020.MA Haizhen,ZHAO Zhe,HU Yong,et al. PetroChina overseas oil and gas reserves standard guideline[R]. China National Oil and Gas Exploration and Development Corporation,2020. [18] 程绩伟,周玉冰,张克鑫,等.安第斯构造岩性油藏储层预测技术及应用[J].地质评论,2023,69(增刊1):327-328.CHENG Jiwei,ZHOU Yubing,ZHANG Kexin,et al. Reservoir characterization of tectonic-lithologic reservoir in Andes[J]. Geological Review,2023,69(Suppl 1):327-328. [19] 何彬,陈诗望,郝斐,等.厄瓜多尔Oriente盆地油气地质条件及成藏模式[J].天然气技术与经济,2014,8(3):6-10.HE Bin,CHEN Shiwang,HAO Fei,et al. Petroleum geology and reservoir-forming modes in Oriente Basin,Ecuador[J]. Natural Gas Technology and Economy,2014,8(3):6-10. [20] SHANMUGAM G,POFFENBERGER M,TORO A J. Tidedominated estuarine facies in the Hollin and Napo Formations,Sacha field,Oriente basin,Ecuador[J]. AAPG Bulletin,2000,84(5):652-682. [21] LINDSAY R O,BOCANEGRA D. Sand thickness prediction from band-limited seismic attributes using neural networks,Oriente Basin,Ecuador[C]. SEG 72nd Annual Meeting Expanded Technical Program Abstracts with Biographies. Tulsa:Society of Exploration Geophysicists,2002:2451-2454. [22] WHITE H J,SKOPEC R A,RODAS J A,et al. Reservoir characterization of the Hollin and Napo Formations,Western Oriente Basin,Ecuador[G]. AAPG Memoir 62,1995:573-596. [23] 王光付,徐海,李发有,等.超薄砂岩储层预测方法研究与应用:以厄瓜多尔安第斯14和17区块为例[J].石油与天然气地质,2023,44(2):247-263.WANG Guangfu,XU Hai,LI Fayou,et al. Predication methods of ultra-thin sandstone reservoirs and their application to blocks 14 and 17 in the Andes,Ecuador[J]. Oil&Gas Geology,2023,44(2):247-263. |
[1] | 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55. |
[2] | 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66. |
[3] | 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70. |
[4] | 秦正山, 何勇明, 丁洋洋, 李柏宏, 孙双双. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188. |
[5] | 洪国良, 王红军, 祝厚勤, 白振华, 王雯雯. 南苏门答腊盆地J区块中新统Gumai组岩性油气藏成藏条件及有利区带[J]. 岩性油气藏, 2023, 35(6): 138-146. |
[6] | 王雪柯, 王震, 计智锋, 尹微, 姜仁, 侯珏, 张艺琼. 滨里海盆地东缘石炭系盐下碳酸盐岩油气藏成藏规律与勘探技术[J]. 岩性油气藏, 2023, 35(6): 54-62. |
[7] | 李恒萱, 温志新, 宋成鹏, 刘祚冬, 季天愚, 沈一平, 耿珂. 塞内加尔盆地演化过程与岩性油气藏勘探前景[J]. 岩性油气藏, 2023, 35(6): 45-53. |
[8] | 刘计国, 周鸿璞, 秦雁群, 邹荃, 郑凤云, 李早红, 肖高杰. 非洲Muglad盆地Fula凹陷白垩系AG组岩性油气藏勘探潜力[J]. 岩性油气藏, 2023, 35(6): 82-91. |
[9] | 聂礼尚, 马静辉, 唐小飞, 杨智, 张婉金, 李鸿蕊. 准噶尔盆地东部帐篷沟地区中新生代构造事件及其油气地质意义[J]. 岩性油气藏, 2023, 35(5): 81-91. |
[10] | 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18. |
[11] | 周东红, 谭辉煌, 张生强. 渤海海域垦利6-1油田新近系复合河道砂体地震描述技术[J]. 岩性油气藏, 2022, 34(4): 13-21. |
[12] | 王茂桢, 吴奎, 郭涛, 惠冠洲, 郝轶伟. 辽东凹陷东南缘古近系沙二段储层特征及控制因素[J]. 岩性油气藏, 2022, 34(4): 66-78. |
[13] | 牛成民, 杜晓峰, 王启明, 张参, 丁熠然. 渤海海域新生界大型岩性油气藏形成条件及勘探方向[J]. 岩性油气藏, 2022, 34(3): 1-14. |
[14] | 王乔, 宋立新, 韩亚杰, 赵会民, 刘颖. 辽河西部凹陷雷家地区古近系沙三段沉积体系及层序地层[J]. 岩性油气藏, 2021, 33(6): 102-113. |
[15] | 许璟, 贺永红, 马芳侠, 杜彦军, 马浪, 葛云锦, 王瑞生, 郭睿, 段亮. 鄂尔多斯盆地定边油田主力油层有效储层厚度[J]. 岩性油气藏, 2021, 33(5): 107-119. |
|