岩性油气藏 ›› 2023, Vol. 35 ›› Issue (6): 106–116.doi: 10.12108/yxyqc.20230612

• 地质勘探 • 上一篇    下一篇

东非鲁伍马盆地中始新统深水沉积特征及层序界面识别方法

孙辉, 范国章, 王红平, 丁梁波, 左国平, 马宏霞, 庞旭, 许小勇   

  1. 中国石油杭州地质研究院, 杭州 310023
  • 收稿日期:2023-04-24 修回日期:2023-05-09 出版日期:2023-11-01 发布日期:2023-11-07
  • 第一作者:孙辉(1969—),女,高级工程师,主要从事地震深水沉积及储层方面研究。地址:(310023)浙江省杭州市西湖区西溪路920号。Email:sunh_hz@petrochina.com.cn。
  • 基金资助:
    中国石油天然气集团有限公司科技项目“海外深水、超深水油气勘探关键技术研究”(编号:2021DJ2403)资助

Deep-water sedimentary characteristics and sequence boundary identification of Middle Eocene in Rovuma Basin,East Africa

SUN Hui, FAN Guozhang, WANG Hongping, DING Liangbo, ZUO Guoping, MA Hongxia, PANG Xu, XU Xiaoyong   

  1. PetroChina Hangzhou Research Institute of Petroleum Geology, Hangzhou 310023, China
  • Received:2023-04-24 Revised:2023-05-09 Online:2023-11-01 Published:2023-11-07

摘要: 以层序地层学经典模式为指导,利用岩心、测井、录井及地震资料,总结了东非鲁伍马盆地深水区中始新统三级和四级层序界面特征,将深水沉积中发育的水道-朵体复合体与沉积相对应,划分了沉积亚相和微相,并在此基础上探讨了深水沉积的演化规律及其对储层的影响。研究结果表明:①鲁伍马盆地中始新统三级层序顶界位于凝缩段和偶发的碳酸盐碎屑流顶部,底界为逐期南向迁移的重力流底界;四级层序由半深海泥岩顶界和地震剖面上连续性好的沉积界面确定,但仅可以在水道-朵体复合体分布范围内开展解释。②研究区深水沉积可识别出水道复合体和朵体复合体2种沉积相,复合水道、朵体、决口扇和溢岸/漂积沉积4种亚相,水道轴部/边部充填、内天然堤、块体搬运沉积(MTD)、水道底部滞留沉积、朵体单元主体/边缘、决口扇和溢岸/漂积沉积等9种沉积微相;决口扇和溢岸/漂积沉积均分布于复合水道的北侧,受底流影响的决口扇在平面上呈向北发散的脉状。③研究区中始新统深水沉积的演化分为SQ1—SQ4共4个阶段,整体表现为先进积、后退积的过程,水道-朵体复合体受重力流与底流交互作用影响,逐期向南迁移。④研究区储层的发育主要受控于沉积微相,朵体单元主体和水道轴部充填微相发育的储层品质好,其中朵体单元主体微相中储层最发育、物性最好,孔隙度为13.00%~21.00%,渗透率为5.0~118.0 mD,水道轴部充填微相次之,储层孔隙度为13.00%~19.00%,渗透率为0.8~23.0 mD;溢岸/漂积沉积微相中发育的储层物性差,决口扇不发育储层。

关键词: 深水沉积, 重力流, 底流, 复合水道-朵体, 决口扇, 层序界面, 中始新统, 东非鲁伍马盆地

Abstract: Guided by the classic model of sequence stratigraphy,using core,welllog,mudlog and seismic data,the characteristics of the third-order and fourth-order sequence boundaries of Middle Eocene in the deep-water area of Rovuma Basin in East Africa were summarized. Corresponding to channel-lobe complexes in deep-water depo-sits,sedimentary subfacies and microfacies were divided. Based on this,the evolution laws of deep-water deposits and the influence of sedimentary microfacies on reservoirs were explored. The results show that:(1)The top boundary of the third-order sequence of Middle Eocene in Rovuma Basin is located at the top of the condensed section and occasional carbonate debris flow,and the bottom boundary is located at the bottom of the gravity flow that migrates southward in stages. The fourth-order sequence is determined by the top boundary of the bathyal deposit and the sedimentary interface with good continuity on the seismic section,but can only be interpreted within the distribution range of the channel-lobe complexes.(2)Two sedimentary facies,including channel complex and lobe complex,have been identified in deep-water deposits in the study area. The two sedimentary facies can be subdivided into four subfacies:composite channel,lobe,crevasse splay,and overbank/drift deposits. There are nine microfacies,including channel axis/edge filling,internal natural levee,mass transport deposits(MTD),channel bottom lag deposit,lobe element main body/edge,crevasse splay,and overbank/drift deposits. Both crevasse splay and overbank/drift deposits are distributed in the northern part of the composite channel,and the crevasse splay affected by bottom flow is in a northward divergent vein shape.(3)The evolution of deep-water depo-sits of Middle Eocene in the study area can be divided into four stages,namely SQ1-SQ4 in sequence,showing a process of progradational deposition and retrograde deposition as a whole. Affected by the interaction between gravity flow and bottom current,the channel-lobe complexes gradually migrated southward.(4)The development of reservoirs in the research area is mainly controlled by sedimentary microfacies. The main body of the lobe element and the axis of the channel developed high-quality reservoirs. The reservoirs are the most developed and the physical properties are the best in the main body of the lobe element,with a porosity of 13.00%-21.00% and a permeability of 5.0-118.0 mD. The reservoir properties at the axis of the channel are secondary,with a poro-sity of 13.00%-19.00% and a permeability of 0.8-23.0 m D. The reservoir properties of overbank/drift deposits are poor,and the reservoirs in the crevasse splay are not developed.

Key words: deep-water deposit, gravity flow, bottom current, composite channel-lobe, crevasse splay, sequence boundary, Middle Eocene, Rovuma Basin in East Africa

中图分类号: 

  • TE121.3
[1] 朱筱敏,谈明轩,董艳蕾,等.当今沉积学研究热点讨论:第20届国际沉积学大会评述[J].沉积学报,2019,37(1):1-16.ZHU Xiaomin,TAN Mingxuan,DONG Yanlei,et al. Current hot topics of sedimentology:Comment on the 20th international sedimentological congress[J]. Acta Sedmentologica Sinica,2019,37(1):1-16.
[2] 吴因业,张天枢,张志杰,等.沉积体系域类型、特征及石油地质意义[J].古地理学报,2010,12(1):69-81.WU Yinye,ZHANG Tianshu,ZHANG Zhijie,et al. Types and characteristics of depositional systems tract and its petroleum geological significance[J]. Journal of Palaeogeography,2010,12(1):69-81.
[3] 庞雄,陈长民,彭大钧,等.南海珠江深水扇系统的层序地层学研究[J].地学前缘,2007,14(1):220-229.PANG Xiong,CHEN Changmin,PENG Dajun,et al. Sequence stratigraphy of Pearl River deep-water fan system in South China Sea[J]. Earth Science Frontiers,2007,14(1):220-229.
[4] 庞雄,彭大钧,陈长民,等.三级“源-渠-汇”耦合研究珠江深水扇系统体系[J].地质学报,2007,81(6):857-864.PANG Xiong,PENG Dajun,CHEN Changmin,et al. Three hierarchies“source-conduit-sink”coupling analysis of the Pearl River deep-water fan system[J]. Acta Geologica Sinica,2007,81(6):857-864.
[5] HIS Energy. Basin monitors:Ruvuma Basin[M]. Houston:IHS Inc.,2009.
[6] CATUNEANU O. Principles of sequence stratigraphy[M]. Italy:Elsevier,2006.
[7] JUNSSEN M E,STEPHENSON R A,CLOETINGH S. Temporal and spatial correlation between changes in plate motion and the evolution of rifted basins in Africa[J]. GSA Bulletin,1995,107(11):1317-1332.
[8] MAHANJANE E S,FRANKE D. The Ruvuma Delta deep-water fold-and-thrust belt,offshore Mozambique[J]. Tectonophysics,2014,614(3):91-99.
[9] 周总瑛,陶冶,李淑筠,等.非洲东海岸重点盆地油气资源潜力[J].石油勘探与开发,2013,40(5):543-551.ZHOU Zongying,TAO Ye,LI Shujun,et al. Hydrocarbon potential in the key basins in the East Coast of Africa[J]. Petroleum Exploration and Development,2013,40(5):543-551.
[10] 孔祥宇.东非鲁武马盆地油气地质特征与勘探前景[J].岩性油气藏,2013,25(3):21-27.KONG Xiangyu. Petroleum geologic characteristics and exploration prospect in Rovuma Basin,East Africa[J]. Lithologic Reservoirs,2013,25(3):21-27.
[11] 孙辉,吕福亮,范国章,等.三级层序内受底流影响的富砂深水沉积演化规律:以东非鲁武马盆地中中新统为例[J].天然气地球科学,2017,28(1):106-115.SUN Hui,LYU Fuliang,FAN Guozhang,et al. Evolution of deepwater sand-rich sediments affected by bottom currents in the 3rd order sequences:A case study of Middle Miocene in the Ruvuma Basin[J]. Natural Gas Geoscience,2017,28(1):106-115.
[12] 孙辉,刘少治,吕福亮,等.东非鲁武马盆地渐新统深水沉积层序地层格架组成和时空分布[J].石油与天然气地质,2019,40(1):170-181.SUN Hui,LIU Shaozhi,LYU Fuliang,et al. Stratigraphic framework and temporal-spatial distribution of Oligocene deepwater sedimentary sequence in Ruvuma Basin,East Africa[J]. Oil&Gas Geology,2019,40(1):170-181.
[13] 孙辉,刘少治,范国章,等.深水复合水道体系沉积特征及时空演化规律:以东非鲁武马盆地中中新统为例[J].海洋学报(中文版),2019,41(1):87-97.SUN Hui,LIU Shaozhi,FAN Guozhang,et al. Depositional characteristics and temporal and spatial evolution of deep water channel complex systems:A case study of Middle Miocene in the Rovuma Basin,East Africa[J]. Acta Oceanologica Sinica,2019,41(1):87-97.
[14] 孙辉,刘少治,吕福亮,等.东非鲁武马盆地渐新统富砂深水朵体复合体特征及影响因素[J].地质学报,2019,93(5):1154-1165.SUN Hui,LIU Shaozhi,LYU Fuliang,et al. Sedimentary characteristics sand influential factors of Oligocene deepwater sand rich lobe complex in the Rovuma Basin,East Africa[J].Acta Geologica Sinica,2019,93(5):1154-1165.
[15] 孙辉,范国章,邵大力,等.深水局部限制型水道复合体沉积特征及其对储层性质的影响:以东非鲁武马盆地始新统为例[J].石油与天然气地质,2021,42(6):1440-1450.SUN Hui,FAN Guozhang,SHAO Dali,et al. Depositional characteristics of locally restricted channel complex in deep water and its influence on reservoir properties:A case study of the Eocene series,Rovuma Basin[J]. Oil&Gas Geology,2021,42(6):1440-1450.
[16] FONNESU M,PALERMO D,GALBIATI M,et al. A new world-class deep-water play-type,deposited by the syndepositional interaction of turbidity flows and bottom currents:The giant Eocene Coral Field in northern Mozambique[J]. Marine and Petroleum Geology,2020,111:179-201.
[17] 王敏,张佳佳,王瑞峰,等.东非鲁伍马盆地深水海底扇储集层质量差异及主控因素[J].石油勘探与开发,2022,49(3):491-501.WANG Min,ZHANG Jiajia,WANG Ruifeng,et al. Quality variations and controlling factors of deepwater submarine-fan reservoirs,Rovuma Basin,East Africa[J]. Petroleum Exploration and Development,2022,49(3):491-501.
[18] 张佳佳,吴胜和,王瑞峰,等.东非鲁伍马盆地深水X气藏海底扇储层构型研究:重力流-底流交互作用的指示意义[J].古地理学报,2023,25(1):163-179.ZHANG Jiajia,WU Shenghe,WANG Ruifeng,et al. Submarinefan reservoir architecture of deepwater gasfield X in Rovuma Basin offshore East Africa:Insights for the interaction between sediment gravity flows and bottom currents[J]. Journal of Palaeogeography(Chinese Edition),2023,25(1):163-179.
[19] HAQ B U,HARDENBOL J,VAIL P R. Chronology of fluctuating sea levels since the Triassic[J]. Science,1987,235:1156-1167.
[20] MAYALL M,STEWART I. The architecture of turbidite slope channels[M]//WEIMER P. Deep-water reservoirs of the world.Tulsa:SEPM Society for Sedimentary Geology,2000:578-586.
[21] 孙辉,唐鹏程,陈宇航,等.东非鲁武马盆地陆坡深水沉积特征及主控因素[J].海洋地质与第四纪地质,2016,36(3):59-68.SUN Hui,TANG Pengcheng,CHEN Yuhang,et al. Characteristics and controlling factors of deepwater deposits on the continental slope of the Rovuma basin,East Africa[J]. Marine Geology&Quaternary Geology,2016,36(3):59-68.
[22] 段瑞凯,张旭,郭富欣,等.深水复合朵体内部沉积结构及其叠置模式:以尼日尔三角洲盆地Akpo油田中新统D油组为例[J].岩性油气藏,2022,34(5):110-120.DUAN Ruikai,ZHANG Xu,GUO Fuxin,et al. Internal sedimentary structure and stacking patterns of deep-water lobe complex:A case study of Miocene zone D in Akpo oilfield,Niger Delta Basin[J]. Lithologic Reservoirs,2022,34(5):110-120.
[23] 许志刚,韩文明,孙玉梅.东非大陆边缘构造演化过程与油气勘探潜力[J].中国地质,2014,41(3):961-969.XU Zhigang,HAN Wenming,SUN Yumei. Tectonic evolution and petroleum exploration prospect of East Africa[J]. Geology in China,2014,41(3):961-969.
[24] SALMAN G,ABDULA I. Development of the Mozambique and Ruvuma sedimentary basins,offshore Mozambique[J]. Sedimentary Geology,1995,96(1):7-41.
[25] BOSELLINI A. East Africa continental margins[J]. Geology,1986,14(1):76-78.
[26] 温志新,王兆明,宋成鹏,等.东非被动大陆边缘盆地结构构造差异与油气勘探[J].石油勘探与开发,2015,42(5):671-680.WEN Zhixin,WANG Zhaoming,SONG Chengpeng,et al. Structural architecture difference and petroleum exploration of passive continental margin basins in east Africa[J]. Petroleum Exploration and Development,2015,42(5):671-680.
[27] MUTTI E,CAEMINATTI M. Deep-water sands of the Brazilian offshore basins[M]//AAPG international conference and exhibition. Milan,Italy:AAPG Publication,2011.
[28] FAUGERES J C,MULDER T. Contour currents and contourite drifts[M]//HÜNEKE H,MULDER T. Deep-sea sediments. Amsterdam:Elsevier,2011:149-214.
[29] COCHRAN J R. Himalayan uplift,sea level,and the record of Bengal Fan sedimentation at ODP leg 116 sites[M]//COCHRAN J R,STOW D A V. Proceedings of the ocean drilling program scientific results. USA:A&M University Press,1990:397-414.
[30] SCHLAGER W,REIJMER J J G,DROXLER A W. High stand shedding of carbonate platforms[J]. Journal of Sedimentary Research,1994,64(3):270-281.
[31] SPRAGUE A R,SULLIVAN MD,CAMPION KM,et al. The physical stratigraphy of deep-water stratal:A hierarchical approach to the analysis of genetically related stratigraphic elements for improved reservoir prediction[R]. Houston,Texas:2002 AAPG Annual Meeting.
[32] PRÉLAT A,COVAULT J A,HODGSON DM,et al. Intrinsic controls on the range of volumes,morphologies,and dimensions of submarine lobes[J]. Sedimentary Geology,2010,232(1/2):66-76.
[33] 傅强,李璟,邓秀琴,等.沉积事件对深水沉积过程的影响:以鄂尔多斯盆地华庆地区长6油层组为例[J].岩性油气藏,2019,31(1):20-29.FU Qiang,LI Jing,DENG Xiuqin,et al. Influence of sedimentary events on deep water sedimentation process:A case of Chang 6 reservoir in Huaqing area,Ordos Basin[J]. Lithologic Reservoirs,2019,31(1):20-29.
[34] 庞雄,陈长民,朱明,等.深水沉积研究前缘问题[J].地质论评,2007,53(1):36-43.PANG Xiong,CHEN Changmin,ZHU Ming,et al. Frontier of the deepwater deposition study[J]. Geological Review,2007,53(1):36-43.
[1] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[2] 李恒萱, 温志新, 宋成鹏, 刘祚冬, 季天愚, 沈一平, 耿珂. 塞内加尔盆地演化过程与岩性油气藏勘探前景[J]. 岩性油气藏, 2023, 35(6): 45-53.
[3] 窦立荣, 李志, 杨紫, 张兴阳, 康海亮, 张明军, 张良杰, 丁梁波. 中国石油海外岩性地层油气藏勘探进展与前景展望[J]. 岩性油气藏, 2023, 35(6): 1-9.
[4] 史卜庆, 丁梁波, 马宏霞, 孙辉, 张颖, 许小勇, 王红平, 范国章. 东非海域大型深水沉积体系及油气成藏特征[J]. 岩性油气藏, 2023, 35(6): 10-17.
[5] 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151.
[6] 李冬梅, 李会会, 朱苏阳, 李涛. 断溶体油气藏流动物质平衡方法[J]. 岩性油气藏, 2022, 34(1): 154-162.
[7] 黄雅睿, 杨剑萍, 卢惠东, 李宇志, 黄志佳, 党鹏生, 房萍, 牟瑛顺. 东营凹陷营北地区沙三中亚段重力流沉积特征[J]. 岩性油气藏, 2022, 34(1): 14-23.
[8] 冯雪, 高胜利, 刘永涛, 王秀珍. 鄂尔多斯盆地陇东地区延长组三角洲前缘前积结构特征[J]. 岩性油气藏, 2021, 33(6): 48-58.
[9] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[10] 符勇, 李忠诚, 万谱, 阙宜娟, 王振军, 吉雨, 黄礼, 罗静兰, 鲍志东. 三角洲前缘滑塌型重力流沉积特征及控制因素——以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208.
[11] 杨占龙, 沙雪梅, 魏立花, 黄军平, 肖冬生. 地震隐性层序界面识别、高频层序格架建立与岩性圈闭勘探——以吐哈盆地西缘侏罗系—白垩系为例[J]. 岩性油气藏, 2019, 31(6): 1-13.
[12] 刘为, 杨希冰, 张秀苹, 段亮, 邵远, 郝德峰. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏, 2019, 31(2): 75-82.
[13] 傅强, 李璟, 邓秀琴, 赵世杰, 庞锦莲, 孟鹏飞. 沉积事件对深水沉积过程的影响——以鄂尔多斯盆地华庆地区长6油层组为例[J]. 岩性油气藏, 2019, 31(1): 20-29.
[14] 李俞锋, 蒲仁海, 唐明, 袁超, 吴仕玖. 一种新型底流与浊流交互作用形成的储集砂体——以北礁凹陷为例[J]. 岩性油气藏, 2018, 30(6): 55-66.
[15] 左国平, 范国章, 吕福亮, 邵大力. 孟加拉湾浅层气成藏条件及地震识别技术[J]. 岩性油气藏, 2018, 30(2): 110-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .