岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 55–66.doi: 10.12108/yxyqc.20180607

• 油气地质 • 上一篇    下一篇

一种新型底流与浊流交互作用形成的储集砂体——以北礁凹陷为例

李俞锋1,2,3, 蒲仁海3, 唐明4, 袁超4, 吴仕玖4   

  1. 1. 西南科技大学 环境与资源学院, 四川 绵阳 621010;
    2. 自然资源部海底矿产资源重点实验室, 广州 510075;
    3. 大陆动力学国家重点实验室·西北大学, 西安 710069;
    4. 中海石油(中国)有限公司湛江分公司 研究院, 广东 湛江 524057
  • 收稿日期:2018-05-26 修回日期:2018-08-31 出版日期:2018-11-16 发布日期:2018-11-16
  • 作者简介:李俞锋(1986-),男,博士,讲师,主要从事海洋沉积学及其油气效应方面的教学和科研工作。地址:(621010)四川省绵阳市涪城区青龙大道中段59号西南科技大学环境与资源学院。Email:526376337@qq.com。
  • 基金资助:
    国家自然科学基金重大项目“中国非常规油气组成特征、分类与典型地质模型建立”(编号:41390451)和自然资源部海底矿产资源重点实验室公开基金“琼东南盆地北礁凹陷构造断层特征、成因及地质意义”(编号:KLMMR-2018-B-07)联合资助

A new reservoir sand body resulted from interaction between turbidity flows and bottom currents: a case from Beijiao Sag of Qiongdongnan Basin

LI Yufeng1,2,3, PU Renhai3, TANG Ming4, YUAN Chao4, WU Shijiu4   

  1. 1. School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;
    2. Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources, Guangzhou 510075, China;
    3. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China;
    4. Research Institute of Zhanjiang Branch, CNOOC Ltd, Zhanjiang 524057, Guangdong, China
  • Received:2018-05-26 Revised:2018-08-31 Online:2018-11-16 Published:2018-11-16

摘要: 目前地质学家对垂直于大陆斜坡发育的浊积水道研究已较为成熟,而对平行于大陆斜坡水道的研究还处于起步阶段。在深水环境中,底流与浊流交互作用较为普遍,但研究少且程度较低,与这种交互作用相关的平行斜坡水道亟待深入研究。通过二维地震资料对北礁凹陷的古地貌进行研究,再利用三维地震资料的时间域构造、均方根振幅等,结合三维区的地震剖面和该区沉积环境及海平面升降、古气候等因素对平行斜坡强振幅水道进行综合研究。结果表明:北礁凹陷中中新世具有狭窄通道古地形特征,东北部发育一条近平行斜坡水道,且主要分布在该狭窄通道的右侧,该水道呈指状或锥状展布。沿水道方向有前积现象,且水道头部也有前积现象,而中部、尾部均以平行充填为主,该水道下方不发育大型断层。该平行斜坡水道是垂直于斜坡的浊流与沿斜坡的底流在狭窄通道处交互作用的沉积结果,该水道是一种新型的岩性储集砂体,具有潜在的高孔、高渗特征,该水道形成时的古气候和狭窄通道的古地形是其主控因素,并提出了这种新型储集砂体的沉积模式,丰富了我国深水砂体的类型。该水道具有重要的古海洋、古气候意义,可能在深水环境下的狭窄通道处广泛分布,是南海深水油气勘探的潜在接替新区,应引起石油地质工作者的重视。

关键词: 平行斜坡水道, 底流与浊流交互作用, 狭窄通道, 新型储集砂体, 北礁凹陷

Abstract: Nowadays, geologists have mainly focused on channels originated from turbidite flows and perpendicular to continental margin slope, of which the field is now mature. In the deep-water environment, there is pervasive phenomenon for interaction between bottom currents and turbidity flows, of which the study is less. The interaction, resulting in parallel-slope channels, needs to be further researched urgently. Parallel-slope channels, however, are in the initial stage of research. The paleogeomorphology of Beijiao Sag was studied by using 2 D seismic data. Then the time-domain structure and root-mean-square amplitude of 3 D seismic data were used to comprehensively study the high-amplitude parallel-slope channels combined with the seismic profiles of 3 D region, sedimentary environment, sea level change and paleoclimate. The results show that Beijiao Sag was narrow-pathway shaped paleotopography in the Mid-Miocene. A parallel-slope channel with high amplitude was mainly distributed on the right side of narrow pathway in the northeastern Beijiao Sag, exhibiting multi-finger shaped or coneshaped. There was a progradation seismic reflection along the channel, and there were similar progradation seismic reflections and parallel-filling seismic reflections at the head and middle-tail of the channel in the crossing profile of channels, respectively. There was no tectonic fault beneath the parallel-slope in underlying strata. The parallelslope channel is a sedimentary result of interaction between turbidity flows and bottom currents associated with intermediate water, in the process of which fined grained debris such as mud was carried away by bottom currents and coarse-grained debris such as sand was deposited and filled within the channels. The channel is a new type of lithologic reservoir sandbody characterized by high porosity and high permeability. Finally, the main controlling factors consisting of paleoclimate and special paleotopography were analyzed and their sedimentary model was proposed. The channel has important paleoceanic and paleoclimate significance, which not only enriches the type of deep-water sandbody in China, but also is a potential replacement area for deep-water oil and gas exploration in the South China Sea. The channels should be paid attention to by petroleum geologists.

Key words: parallel-slope channel, interaction between turbidity flows and bottom currents, narrow pathway, new reservoir sand body, Beijiao Sag

中图分类号: 

  • TE121.3
[1] HE Y L, XIE X N, KNELLER B C, et al. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin,northern South China Sea. Marine and Petroleum Geology, 2013, 41:264-276.
[2] ZHU M Z, GRAHAM S, PANG X, et al. Characteristics of migrating submarine canyons from the Middle Miocene to present:Implications for paleoceanographic circulation, northern South China Sea. Marine and Petroleum Geology, 2010, 27:307-319.
[3] GONG C L, WANG Y M, ZHU W L, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea. AAPG Bulletin, 2013, 97(2):285-308.
[4] LI H, WANG Y M, ZHU W L, et al. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea. Marine and Petroleum Geology, 2013, 43:370-380.
[5] ZHOU W, WANG Y M, GAO X Z, et al. Architecture,evolution history and controlling factors of the Baiyun submarine canyon system from the middle Miocene to Quaternary in the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 2015, 67:389-407.
[6] BISCARA L, MULDER T, GONTHIER E, et al. Migrating submarine furrows on Gabonese margin(West Africa)from Miocene to present:influence of bottom current? Ceo-Temas, 2010, 11:21-22.
[7] VIANA A R,ALMEIDA J W,MACHADO L C. Different styles of canyon infill related to gravity and bottom current processes:examples from the upper slope of the Se Brazilian Margin. The 6th International Congress of the Brazilian Geophysical Society, SBGF 01499, 1999.
[8] RASMUSSEN S, LYKKE-ANDERSEN H, KUIJERS A, et al. Post-Miocene sedimentation at the continental rise of Southeast Greenland:the interplay between turbidity and contour currents. Marine Geology, 2003, 196:37-52.
[9] GONG C L, WANG Y M, ZHENG R C, et al. Middle Miocene reworked turbidites in the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea margin:Processes, genesis, and implications. Journal of Asian Earth Sciences, 2016, 128:116-129.
[10] CAMPBELL D C, MOSHER D C. Geophysical evidence for widespread Cenozoic bottom current activity from the continental margin of Nova Scotia, Canada. Marine Geology, 2016, 378:237-260.
[11] 鲁银涛. 深水重力流沉积发育特征与形成机制研究. 青岛:中国科学院大学(中国科学院海洋研究所), 2017. LU Y T. Development characteristics and formation mechanism of deep water gravity flow deposits. Qingdao:University of Chinese Academy of Sciences(Institute of Oceanography, Chinese Academy of Sciences), 2017.
[12] 孙辉, 吕福亮, 范国章, 等.三级层序内受底流影响的富砂深水沉积演化规律——以东非鲁武马盆地中中新统为例.天然气地球科学, 2017, 28(1):106-115. SUN H, LYU F L, FAN G Z, et al. Evolution of deepwater sand-rich sediments affected by bottom currents in the third order sequences:a case study of Middle Miocene in the Ruvuma Basin. Natural Gas Geoscience, 2017, 28(1):106-115.
[13] 陈宇航,姚根顺,吕福亮, 等. 东非鲁伍马盆地渐新统深水水道-朵体沉积特征及控制因素. 石油学报, 2017, 38(9):1047-1058. CHEN Y H, YAO G S, LYU F L, et al. Sedimentary characteristics and controlling factors of Oligocene deep-water channellobe in Rovuma Basin of the East Africa. Acta Petrolei Sinica, 2017, 38(9):1047-1058.
[14] 雷超, 任建业, 裴健翔, 等.琼东南盆地深水区构造格局和幕式演化过程.地球科学——中国地质大学学报, 2011, 36(1):151-162. LEI C, REN J Y, PEI J X, et al. Tectonic framework and multiple episode tectonic evolution in deepwater area of Qiongdongnan Basin,northern continental margin of South China Sea. Eeath Scinence-Journal of China University of Geosciences, 2011, 36(1):151-162.
[15] XIE X N, MULLER R D, LI S T, et al. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 2006, 23(7):745-765.
[16] 于亚苹, 刘立, 徐守立, 等.西沙群岛西科1井梅山组一段储层物性特征及储集评价.世界地质, 2015, 34(4):1069-1078. YU Y P, LIU L, XU S L, et al. Reservoir characteristics and evaluation of the first member of Meishan Formation in well Xike 1, Xisha Islands. Global Geology, 2015, 34(4):1069-1078.
[17] 龚再升. 生物礁是南海北部深水区的重要勘探领域. 中国海上油气, 2009, 21(5):289-295. GONG Z S. Reef:an important exploration realm in the deepwater areas, the northern South China Sea. China Offshore Oil and Gas, 2009, 21(5):289-295.
[18] TIAN J, WU S G, LYU F L, et al. Middle Miocene moundshaped sediment packages on the slope of the Xisha carbonate platforms,South China Sea:Combined result of gravity flow and bottom current. Deep Sea Research Part Ⅱ, 2015, 122:172-184.
[19] 李俞锋, 蒲仁海, 屈红军, 等.琼东南盆地北礁凹陷梅山组顶部丘形反射特征及成因分析.海洋学报, 2017, 39(5):89-102. LI Y F, PU R H, QU H J, et al. The characteristics and genesis analysis of the mound at the top of Meishan Formation in the Beijiao sag of the Qiongdongnan Basin. Haiyang Xuebao, 2017, 39(5):89-102.
[20] 魏魁生, 崔旱云, 叶淑芬, 等.琼东南盆地高精度层序地层学研究.地球科学——中国地质大学学报, 2001, 26(1):59-66. WEI K S, CUI H Y, YE S F, et al. High-precision sequence stratigraphy in Qiongdongnan Basin. Earth Science-Journal of China University of Geosciences, 2001, 26(1):59-66.
[21] 汪品先, 赵泉鸿, 翦知湣, 等.南海三千万年的深海记录.科学通报, 2003, 48(21):2206-2215. WANG P X, ZHAO Q H, JIAN Z M, et al. The deep sea record of the South China Sea for thirty million years. Chinese Science Bulletin, 2003, 48(21):2206-2215.
[22] 李俞锋, 蒲仁海, 樊笑微, 等.琼东南盆地北礁凹陷多边形断层发育特征及成因.大地构造与成矿学, 2017, 41(5):817-828. LI Y F, PU R H, FAN X W, et al. Characteristics and genesis of the polygonal fault system in Beijiao Sag of the Qiongdongnan Basin, the Northern South China Sea. Geotectonica et Metallogenia, 2017, 41(5):817-828.
[23] 李俞锋, 蒲仁海, 牛宁, 等.谷-丘互相对称的地震反射特征与成因及对琼东南盆地北礁凹陷的意义. 地质科技情报, 2017, 36(3):286-292. LI Y F, PU R H, NIU N, et al. Genesis and characteristics of the mutually symmetric trough-mound/hummock seismic reflections and their geological significance in Beijiao sag, Qiongdongnan Basin. Geological Science and Technology Information, 2017, 36(3):286-292.
[24] 李云, 郑荣才, 朱国金, 等.珠江口盆地白云凹陷珠江组深水牵引流沉积特征及其地质意义.海洋学报, 2012, 34(1):127-135. LI Y, ZHENG R C, ZHU G J, et al. Deep-water tractive deposition in Zhujiang Formation Baiyun sag, Zhujiang River Mouth Basin and its geological implications. Acta Oceanologica Sinica, 2012, 34(1):127-135.
[25] PALAMENGHI L, KEIL H, SPIESS V. Sequence stratigraphic framework of a mixed turbidite-contourite depositional system along the NW slope of the South China Sea. Geo-Marine Letters, 2015, 35:1-21.
[26] SUN Q L, CARTWRIGHT J, WU S G, et al. Submarine erosional troughs in the northern South China Sea:evidence for Early Miocene deepwater circulation and paleoceanographic change. Marine and Petroleum Geology, 2016, 77:75-91.
[27] DERCOUNRT J, GAETANI M, VRIELYNCK B, et al. Atlas Peri-Tethys paleogeographical maps, I-XX CCGM/CGMW. Paris, 2000:1-269.
[28] KUHNT W, HOLBOURN A, HALL R, et al. Neogene history of the Indonesian throughflow?CLIFT P D, WANG P, KUHNT W, et al. Continent-ocean interactions within East Asian Marginal Seas. Washington D C:American Geophysical Union, 2004:299-320.
[29] TSUCHI R. Marine climatic responses to Neogene tectonics of the Pacific Ocean seaways. Tectonophysics, 1997, 281:113-124.
[30] 朱筱敏.沉积岩石学.4版.北京:石油工业出版社, 2008:356-399. ZHU X M. Sedimentary lithology. 4th ed. Beijing:Petroleum Industry Press, 2008:356-399.
[31] CHEN H, XIE X N, VAN R D, et al. Depositional characteristics and processes of along slope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin,South China Sea. Marine Geology, 2014, 355(3):36-53.
[32] 林景星, 杨慧宁, 姜仕军, 等.南海盆地新近纪浮游有孔虫带、气候、生物生产力爆炸事件和沉降速度的转换时限.地质学报, 2007, 81(3):285-294. LIN J X, YANG H N, JIANG S J, et al. The planktonic foraminiferal zone, climate, bioproductivity explosion event, and time limit of change subsidence velocity in the South China Sea basin during the Neogene. Acta Geologica Sinica, 2007, 81(3):285-294.
[33] MILLER K G, WRIGHT J D, FAIRBANKS P G. Unlocking the Ice House:Oligocen-Miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research, 1991, 96(B4):6829-6848.
[34] FAUGÈRES J C, STOW D A V. Bottom-current-controlled sedimentation:a synthesis of the contourite problem. Sedimentary Geology, 1993, 82:287-297.
[35] 李俞锋, 蒲仁海, 屈红军, 等.琼东南盆地古地形对北礁凹陷中中新统丘控制作用.地质科技情报, 2018, 37(2):1-8. LI Y F, PU R H, QU H J, et al. Distribution of bottom current channels and mounds controlled by paleo-morphology in MidMiocene in Beijiao Sag of Qiongdongnan Basin. Geological Science and Technology Information, 2018, 37(2):1-8.
[36] STOW D A V, ARMISHAW J E, HOLMES R. Holocene contourite sand sheet on the Barra Fan slope, NW Hebridean margin. Geological Society London Memoirs, 2002, 22(1):99-119.
[37] GARCÍA M, HERNÁNDEZ-MOLINA F J, LLAVE E, et al. Contourite erosive features caused by the Mediterranean Outflow Water in the Gulf of Cadiz:Quaternary tectonic and oceanographic implications. Marine Geology, 2009, 257:24-40.
[38] HERNÁNDEZ-MOLINA F J, STOW D A V, ALVAREZZARIKIAN C A, et al. Onset of Mediterranean outflow into the North Atlantic. Science, 2014, 344:1244-1250.
[39] HERNÁNDEZ-MOLINA F J, LLAVE E, STOW D A V. Chapter 19 Continental slope contourites?REBESCO M, CAMERLENGHI A. Developments in sedimentology. Amsterdam:Elsevier, 2008:379-408.
[40] SHANMUGAM G, SPALDING T D, ROFHEART D H. Process sedimentology and reservoir quality of deep-marine bottomcurrent re-worked sands(sandy contourites):an example from the Gulf of Mexico. AAPG Bulletin, 1993, 77(7):1241-1259.
[41] FAUGÈRES J C, STOW D A V, IMBERT P, et al. Seismic features diagnostic of contourite drifts. Marine Geology, 1999,162:1-38.
[42] 蔡树群, 何建玲, 谢皆烁.近10年来南海孤立内波的研究进展.地球科学进展, 2011, 26(7):703-710. CAI S Q, HE J L, XIE J S. Recent decadal progress of the study on internal solitons in the South China Sea. Advances in Earth Science, 2011, 26(7):703-710.
[43] REED D L, MEYER A W, SILVER E A, et al. Contourite sedimentation in an intraoceanic forearc system:Eastern Sunda Arc, Indonesia. Marine Geology, 1987, 76:223-241.
[44] MÉZERAIS M L, FAUGÈRES J C, FIGUEIREDO A G, et al. Contour current accumulation off the Vema Channel mouth, southern Brazil Basin:pattern of a "contourite fan". Sedimentary Geology, 1993, 82(1/4):173-187.
[45] GARCÍA M, LOBO F J, MALDONADO A, et al. High-resolution seismic stratigraphy and morphology of the Scan Basin contourite fan, southern Scotia Sea, Antarctica. Marine Geology, 2016, 378:361-373.
[46] FAUGERES J C, MULDER T. Chapter 3 Contour Currents and Contourite Drifts? HUNEKE H, MULDER T. Deep-sea Sediments. Amsterdam:Elsevier, 2011:149-214.
[47] REBESCO M, HERNÁNDEZ-MOLINA F J, ROOIJ D V, et al. Contourites and associated sediments controlled by deep-water circulation processes:State-of-the-art and future considerations. Marine Geology, 2014, 352:111-154.
[48] 李华, 何幼斌, 王英民, 等. 深水交互作用沉积研究进展——以南海北部珠江口盆地为例. 岩性油气藏, 2015, 27(5):218-224. LI H, HE Y B, WANG Y M, et al. Research advances in deep water interaction deposition:a case from the Pearl River Mouth Basin, northern South China Sea. Lithologic Reservoirs, 2015, 27(5):218-224.
[49] 谢玉洪.南海北部自营深水天然气勘探重大突破及其启示. 天然气工业, 2014, 34(10):1-8. XIE Y H. A major breakthrough in deepwater natural gas exploration in a self-run oil/gas field in the northern South China Sea and its enlightenment. Natural Gas Industry, 2014, 34(10):1-8.
[50] 尤丽, 于亚苹, 廖静, 等.西沙群岛西科1井第四纪生物礁中典型暴露面的岩石学与孔隙特征.地球科学——中国地质大学学报, 2015, 40(4):671-676. YOU L, YU Y P, LIAO J, et al. Petrological characteristics and pore types of Quaternary reef adjacent typical exposed surface in Well Xike-1, Xisha Islands. Earth Science-Journal of China University of Geosciences, 2015, 40(4):671-676.
[51] 毛雪莲, 朱继田, 姚哲, 等. 琼东南盆地深水区中央峡谷砂体成因与展布规律. 岩性油气藏, 2017, 29(6):60-68. MAO X L, ZHU J T, YAO Z, et al. Sandbody genesis and distribution regularity of Central Canyon in deepwater area of Qiongdongnan Basin. Lithologic Reservoirs, 2017, 29(6):60-68.
[52] 张义娜, 张功成, 何玉平, 等.琼东南盆地北礁凹陷崖城组沉积与烃源岩发育特征. 天然气地球科学, 2013, 24(4):725-732. ZHANG Y N, ZHANG G C, HE Y P, et al. Sedimentation and source characteristics of Yacheng Formation in Beijiao Sag of Qiongdongnan Basin. Natural Gas Geoscience, 2013, 24(4):725-732.
[53] 张功成, 张义娜, 沈怀磊, 等. "源热共控"琼东南盆地的天然气勘探潜力.天然气工业, 2014, 34(1):18-27. ZHANG G C, ZHANG Y N, SHEN H L, et al. An analysis of natural gas exploration potential in the Qiongdongnan Basin by use of the theory of joint control of source rocks and geothermal heat. Natural Gas Industry, 2014, 34(1):18-27.
[1] 陈亚军, 荆文波, 宋小勇, 何伯斌, 伍宏美, 王睿, 解士建, 宋凯辉, 马强. 三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J]. 岩性油气藏, 2021, 33(4): 63-75.
[2] 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11.
[3] 卿繁, 闫建平, 王军, 耿斌, 王敏, 赵振宇, 晁静. 砂砾岩体沉积期次划分及其与物性的关系——以东营凹陷北部陡坡带Y920区块沙四上亚段为例[J]. 岩性油气藏, 2020, 32(6): 50-61.
[4] 何维领, 罗顺社, 李昱东, 吴悠, 吕奇奇, 席明利. 斜坡背景下沉积物变形构造时空展布规律——以鄂尔多斯盆地镇原地区长7油层组为例[J]. 岩性油气藏, 2020, 32(6): 62-72.
[5] 蒋中发, 丁修建, 王忠泉, 赵辛楣. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏, 2020, 32(6): 109-119.
[6] 吴青鹏, 吕锡敏, 陈娟, 周在华, 袁成. 酒泉盆地营尔凹陷下白垩统下沟组沉积特征及勘探方向[J]. 岩性油气藏, 2020, 32(5): 54-62.
[7] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[8] 杨文杰, 胡明毅, 苏亚拉图, 刘昌, 元懿, 李金池. 松辽盆地苏家屯次洼初始裂陷期扇三角洲沉积特征[J]. 岩性油气藏, 2020, 32(4): 59-68.
[9] 薛辉, 韩春元, 肖博雅, 王芳, 李玲. 蠡县斜坡高阳地区沙一下亚段浅水三角洲前缘沉积特征及模式[J]. 岩性油气藏, 2020, 32(4): 69-80.
[10] 何康, 张鹏志, 周军良, 甘立琴, 舒晓. 复合曲流带内部构型界面识别新方法及其应用[J]. 岩性油气藏, 2020, 32(4): 126-135.
[11] 罗晓彤, 文华国, 彭才, 李云, 赵研. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分[J]. 岩性油气藏, 2020, 32(3): 68-81.
[12] 任梦怡, 江青春, 刘震, 卢朝进. 南堡凹陷柳赞地区沙三段层序结构及其构造响应[J]. 岩性油气藏, 2020, 32(3): 93-103.
[13] 童强, 余建国, 田云吉, 胡克来, 杨红梅, 程旭明, 朱玉双. 演武油田Y116井区延8段构型界面约束下的单河道砂体构型[J]. 岩性油气藏, 2020, 32(3): 144-158.
[14] 杨占龙, 沙雪梅, 魏立花, 黄军平, 肖冬生. 地震隐性层序界面识别、高频层序格架建立与岩性圈闭勘探——以吐哈盆地西缘侏罗系—白垩系为例[J]. 岩性油气藏, 2019, 31(6): 1-13.
[15] 郑庆华, 刘乔, 梁秀玲, 张建魁, 张建娜, 刘涛. 鄂尔多斯盆地陇东地区长4+5油层组沉积相展布特征[J]. 岩性油气藏, 2019, 31(6): 26-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .