岩性油气藏 ›› 2024, Vol. 36 ›› Issue (5): 15–24.doi: 10.12108/yxyqc.20240502

• 新能源与伴生资源 • 上一篇    下一篇

三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律

孔令峰1,2, 徐加放1, 刘丁3   

  1. 1. 中国石油大学(华东)石油工程学院, 山东 青岛 266580;
    2. 中国石油天然气集团有限公司发展计划部, 北京 100007;
    3. 中国地质大学(北京)能源学院, 北京 100083
  • 收稿日期:2024-01-23 修回日期:2024-03-13 出版日期:2024-09-01 发布日期:2024-09-04
  • 第一作者:孔令峰(1977—),男,中国石油大学(华东)在读博士研究生,高级工程师,主要从事油气勘探开发、新能源发展战略与规划、投资项目经济评价等方面的研究工作。地址:(100007)北京市东城区东直门北大街9号。Email:lfkong@petrochina.com.cn。
  • 通信作者: 刘丁(1998—),男,中国地质大学(北京)在读博士研究生,研究方向为非常规能源勘探开发。Email:ld19981222@163.com。
  • 基金资助:
    中石油股份公司科技重大专项“煤炭地下气化地质评价与选址研究”(编号:2019E-25)资助。

Pore structure characteristics and dehydration evolution of lignite reservoirs of Jurassic Xishanyao Formation in Santanghu Basin

KONG Lingfeng1,2, XU Jiafang1, LIU Ding3   

  1. 1. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Development Planning Department, China National Petroleum Corporation, Beijing 100007, China;
    3. School of Energy Resources, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2024-01-23 Revised:2024-03-13 Online:2024-09-01 Published:2024-09-04

摘要: 查明干燥前后煤孔隙结构差异及演化规律有助于准确预测煤炭地下气化炉运行效果。通过选择水、煤油作为饱和流体进行低场核磁共振实验,测试并对比同一样品分别在饱水和干燥状态下的孔隙结构差异;通过X-CT技术观察了煤样孔隙结构的脱水演化过程并建立了演化模式;通过脉冲衰减渗透率测试与低温液氮吸附实验评估了煤样的传质能力变化。研究结果表明:①褐煤干燥发生孔隙收缩的同时会产生裂缝,总孔容由0.630 cm3/g降至0.481 cm3/g,而大孔体积显著增加,由0.070 cm3/g增加至0.420 cm3/g,脱水导致孔隙集中,大孔体积占比达88%。②褐煤干燥时的孔隙收缩受基质收缩程度控制,不同煤岩组分脱水的孔隙结构演化模式不同,易收缩的基质煤脱水时,其组分边缘或内部产生大量裂隙,而木质煤或丝质煤脱水收缩较弱,保留大量原生孔隙,裂隙发育较少。③褐煤干燥后,水分脱除、空孔体积增加,渗流状态由单相水向气水两相、单相气流转变的同时形成了良好的连通孔隙网络,煤层渗流能力显著改善,渗透率由0.248 mD增加至48.080 mD,扩散传质贡献增大,干燥褐煤在温度为200℃、压力为0.5 MPa时中孔及大孔的扩散系数约为0.09 cm2/s。

关键词: 褐煤储层, 孔隙结构, 脱水演化规律, 弛豫谱, X射线断层扫描, 渗流能力, 煤炭地下气化, 西山窑组, 侏罗系, 三塘湖盆地

Abstract: It is helpful to accurately predict the operation effect of underground coal gasifier to find out the difference and evolution law of pore structure of coal before and after drying. By selecting water and kerosene as saturated fluids to carry out low-field NMR experiment,the pore structure of the same sample under saturated and dry conditions was tested and compared. The dehydration evolution process of pore structure of coal samples was observed through X-CT technology and an evolution model was established,and pulse attenuation permeability test and low-temperature liquid nitrogen adsorption experiments were conducted to evaluate the mass transfer ability of coal samples. The results show that:(1)During the drying of lignite,pore shrinkage occurs while cracks are produced,and the total pore volume decreases from 0.630 cm3/g to 0.481 cm3/g,while the large pore volume significantly increases from 0.070 cm3/g to 0.420 cm3/g. Dehydration leads to pore concentration,with the large pore volume accounting for 88%.(2)The pore shrinkage during the drying of lignite is controlled by the degree of matrix shrinkage. The dehydration of different coal rock components can be summarized into two types of pore structure evolution models:the dehydration of matrix coal that is prone to shrink develops a large number of cracks at the edges or inside of the components,while the dehydration shrinkage of xylite-rich and charcoal-rich coal is weak,retaining a large number of primary pores and developing fewer cracks.(3)After the drying of the lignite,water is removed and the number of empty pores increases. The seepage state changes from single-phase water to gas-water two-phase and single-phase airflow,forming a good interconnected pore network. The seepage ability of the coal is significantly improved,and the permeability increases from 0.248 to 48.080 mD. The contribution of diffusive mass transfer is increased,with diffusion coefficient of medium and large pores in dry lignite being about 0.09 cm2/s at a temperature of 200 ℃ and a pressure of 0.5 MPa.

Key words: lignite reservoir, pore structure, dehydration evolution law, relaxation spectrum, X-ray CT, seepage ability, underground coal gasification, Xishanyao Formation, Jurassic, Santanghu Basin

中图分类号: 

  • TE122
[1] 王佟, 邵龙义, 夏玉成, 等. 中国煤炭地质研究取得的重大进展与今后的主要研究方向[J]. 中国地质, 2017, 44(2):242-262. WANG Tong, SHAO Longyi, XIAYucheng, et al. Major achievements and future research directions of the coal geology in China[J]. Geology in China, 2017, 44(2):242-262.
[2] SHAFIROVICH E, VARMA A. Underground coal gasification:A brief review of current status[J]. Industrial & Engineering Chemistry Research, 2009, 48(17):7865-7875.
[3] BHUTTO AW, BAZMI AA, ZAHEDI G. Underground coal gasification:From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013, 39(1):189-214.
[4] PERKINS G. Underground coal gasification-Part I:Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67:158-187.
[5] DAGGUPATI S, MANDAPATI R N, MAHAJANI S M, et al. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification[J]. Energy, 2010, 35(6):2374-2386.
[6] SAMDANI G, AGHALAYAM P, GANESH A, et al. A process model for underground coal gasification-Part I:Cavity growth[J]. Fuel, 2016, 181:690-703.
[7] HARLOFF G J. Underground coal gasification cavity growth model[J]. Journal of Energy, 1983, 7(5):410-415.
[8] PARK K Y, EDGAR T F. Modeling of early cavity growth for underground coal gasification[J]. Industrial & Engineering Chemistry Research, 1987, 26(2):237-246.
[9] DINSMOOR B, GALLAND J M, EDGAR T F. The modeling of cavity formation during underground coal gasification[J]. Journal of Petroleum Technology, 1978, 30(5):695-704.
[10] XIN Fudong, XU Hao, TANG Dazhen, et al. Problems in pore property testing of lignite:Analysis and correction[J]. International Journal of Coal Geology, 2021, 245:103829.
[11] EVANS D G. Effects of colloidal structure on physical measurements on coals[J]. Fuel, 1973, 52(2):155-156.
[12] EVANS D G. The brown-coal/water system:Part 4. Shrinkage on drying[J]. Fuel, 1973, 52(3):186-190.
[13] LIU Shuqin, ZHANG Shangjun, CHEN Feng, et al. Variation of coal permeability under dehydrating and heating:A case study of Ulanqab lignite for underground coal gasification[J]. Energy & Fuels, 2014, 28(11):6869-6876.
[14] XIN Fudong, XU Hao, TANG Dazhen, et al. Experimental study on the change of reservoir characteristics of different lithotypes of lignite after dehydration and improvement of seepage capacity[J]. Fuel, 2020, 277:118196.
[15] LIU Xiaohong, YU Haiyang, WEI Lubin. Experimental study on the dehydration characteristics and evolution of the physicochemical structure of XilinGol lignite during the dehydration process[J]. Fuel, 2021, 291:120241.
[16] 姚海鹏, 于东方, 李玲, 等. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2):1-8. YAO Haipeng, YU Dongfang, LI Ling, et al. Adsorption characteristics of typical coal reservoirs in Inner Mongolia[J]. Lithologic Reservoirs, 2021, 33(2):1-8.
[17] 陈亚军, 荆文波, 宋小勇, 等. 三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J]. 岩性油气藏, 2021, 33(4):63-75.CHEN Yajun, JING Wenbo, SONG Xiaoyong, et al. Geochemical characteristics and paleoenvironmental significance of Upper Carboniferous sedimentary strata in Malang Sag, Santanghu Basin[J]. Lithologic Reservoirs, 2021, 33(4):63-75.
[18] 琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报, 2005, 79(2):269-285. JU Yiwen, JIANG Bo, HOU Quanlin, et al. Structural evolution of nano-scale pores of tectonic coals in south ern north China and its mechanism[J]. Acta Geologica Sinica, 2005, 79(2):269-285.
[19] 余海波. 东濮凹陷构造特征及古生界有利勘探区带评价[J]. 岩性油气藏, 2022, 34(6):72-79. YU Haibo. Tectonic characteristics and favorable exploration zones of Paleozoic in Dongpu Sag[J]. Lithologic Reservoirs, 2022, 34(6):72-79.
[20] XU Hao, TANG Dazhen, CHEN Yanpeng, et al. Effective porosity in lignite using kerosene with low-field nuclear magnetic resonance[J]. Fuel, 2018, 213:158-163.
[21] ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance(NMR)[J]. Marine and Petroleum Geology, 2018, 89:775-785.
[22] 全国无损检测标准化技术委员会. 无损检测X射线数字成像检测方法:GB/T 35388-2017[S]. 北京:中国标准出版社, 2017. National Technical Committee 56 on Non-destructive Testing of Standardization Administration of China. Non-destructive testing-X-ray digital radiography-Practice:GB/T 35388-2017[S]. Beijing:Standards Press of China, 2017.
[23] 王崇孝, 田多文, 魏军, 等. 酒泉盆地窟窿山油藏裂缝分布特征[J]. 岩性油气藏, 2008, 20(4):20-25. WANG Chongxiao, TIAN Duowen, WEI Jun, et al. Fractures distribution characteristics of Kulongshan reservoir in Jiuquan Basin[J]. Lithologic Reservoirs, 2008, 20(4):20-25.
[24] 全国石油天然气标准化技术委员会. 页岩氦气法孔隙度和脉冲衰减法渗透率的测定:GB/T 34533-2017[S]. 北京:中国标准出版社, 2017. National Petroleum and Natural Gas Standardization Technical Committee. Measurement of helium porosity and pulse decay permeability of shale:GB/T 34533-2017[S]. Beijing:Standards Press of China, 2017.
[25] 全国颗粒表征与分检及筛网标准化技术委员会. 气体吸附BET法测定固态物质比表面积:GB/T 19587-2017[S]. 北京:中国标准出版社, 2017. Particle Characterization including Sieving other Sizing Methods and Sieves. Determination of the specific surface area of solids by gas adsorption using the BET method:GB/T 19587-2017[S]. Beijing:Standards Press of China, 2017.
[26] 陈振标, 张超谟, 张占松, 等. 利用NMR T2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1):105-110. CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, et al. Using NMR T2spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1):105-110.
[27] ZHENG Sijian, YAO Yanbin, LIU Dameng, et al. Nuclear magnetic resonance surface relaxivity of coals[J]. International Journal of Coal Geology, 2019, 205:1-13.
[28] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1):86-94. ZHU Zhiliang, GAO Xiaoming. Main controlling factors and models of Jurassic coalbed methane accumula tion in Longdong coalfield[J]. Lithologic Reservoirs, 2022, 34(1):86-94.
[29] THOMAS L. Coal geology[M]. Chichester:John Wiley and Sons, 2020:538.
[30] GREGG D W, EDGAR T F. Underground coal gasification[J]. AIChE Journal, 1978, 24:753-781.
[31] 何彦庆, 郑丽, 闫长辉, 等. 页岩储层标准等温吸附曲线的建立:以鄂尔多斯盆地长7 页岩储层为例[J]. 岩性油气藏, 2018, 30(3):92-99. HE Yanqing, ZHENG Li, YAN Changhui, et al. Establishment of standard adsorption isotherms for shale reservoirs:A case of Chang 7 shale reservoir in Ordos Basin[J]. Lithologic Reservoirs, 2018, 30(3):92-99.
[32] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3):14-23. YANG Fu, HE Dan, MA Dongmin, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir[J]. Lithologic Reservoirs, 2020, 32(3):14-23.
[33] 施雷庭, 赵启明, 任镇宇, 等. 煤岩裂隙形态对渗流能力影响数值模拟研究[J]. 油气藏评价与开发, 2023, 13(4):424-432. SHI Leiting, ZHAO Qiming, REN Zhenyu, et al. Numerical simulation study on the influence of coal rock fracture morphology on seepage capacity[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4):424-432.
[34] 马东民, 高正, 陈跃, 等. 不同温度下低、中、高阶煤储层甲烷吸附解吸特征差异[J]. 油气藏评价与开发, 2020, 10(4):17-24. MA Dongmin, GAO Zheng, CHEN Yue, et al. Differences in methane adsorption and desorption characteristics of low, medium and high rank coal reservoirs at different temperatures[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(4):17-24.
[35] 陈卓, 周萍, 梅炽, 等. 传递过程原理[M]. 长沙:中南大学出版社, 2011:433. CHEN Zhuo, ZHOU Ping, MEI Chi, et al. Principle of transfer process[M]. Changsha:Central South University Press, 2011:433.
[36] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57:603-619.
[37] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[J]. Chemistry International, 2015, 87:1051-1069.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[3] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[4] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[5] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[6] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[7] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[8] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[9] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[10] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[11] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[12] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[13] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[14] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[15] 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[5] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[6] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[7] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[8] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[9] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[10] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .