岩性油气藏 ›› 2024, Vol. 36 ›› Issue (6): 160–168.doi: 10.12108/yxyqc.20240615

• 地质勘探 • 上一篇    下一篇

纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态

洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦   

  1. 中国石油大学(北京)地球科学学院, 北京 102249
  • 收稿日期:2023-07-07 修回日期:2023-09-14 出版日期:2024-11-01 发布日期:2024-11-04
  • 第一作者:洪智宾(1998—),男,中国石油大学(北京)在读硕士研究生,研究方向为有机地球化学。地址:(102249)北京市昌平区府学路18号。Email:2021210041@student.cup.edu.cn
  • 通信作者: 吴嘉(1984—),男,博士,副教授,主要从事实验地球化学和油气地球化学方面的科研和教学工作。Email:jia.wu@cup.edu.cn
  • 基金资助:
    国家自然科学基金“中低成熟度陆相页岩油资源形成与原位转化开采机理”(编号:U22B6004)资助。

Heterogeneity of soluble organic matter in shale and occurrence state of shale oil under nanoconfinement

HONG Zhibin, WU Jia, FANG Peng, YU Jinyang, WU Zhengyu, YU Jiaqi   

  1. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2023-07-07 Revised:2023-09-14 Online:2024-11-01 Published:2024-11-04

摘要: 以渤海湾盆地古近系沙河街组三段页岩储层中—低熟页岩油的族组分组成为例,通过分子动力学模拟构建了纳米尺度的页岩可溶有机质体系模型,对地层条件下页岩可溶有机质体系在纳米尺度空间中的分子赋存状态进行了研究,并对页岩油可动性限制因素进行了分析。研究结果表明:①页岩可溶有机质体系模型由饱和烃、芳香烃、非烃、沥青质4类族组分和水组成,质量分数分别为18.6%,18.9%,19.7%,38.6%和4.2%,4类族组分的代表分子分别为nC18,1-甲基菲,一个带有含羧基的长侧链基团的芳香双环结构和C58H65NS。②页岩可溶有机质体系模型模拟初态各族组分均一分布时能量较高,随着模拟时间推移,体系非均质性增强,能量逐步降低;饱和烃与芳香烃分子更易扩散,而非烃和沥青质具有自聚集现象,最终生成以分散小分子为主的游离子体系(饱和烃与芳香烃的总质量分数为42.9%)和以大分子聚集体为主的聚集子体系(非烃和沥青质总质量分数为74.3%);游离子体系中总分子质量更大,占原可溶有机质模拟体系总分子质量的66.7%,扩散速率更快,模拟终态时的密度更小。③分子质量和分子极性是影响纳米限域下页岩油可动性的重要因素;极性分子自聚集必然引发可溶有机质体系的非均质性变化,极性分子团簇非均匀分布并吸附在纳米孔喉空间中可造成页岩油的运移通道堵塞,从而限制页岩油的可动性。

关键词: 页岩油, 非均质性, 可溶有机质体系, 分子动力学模拟, 纳米限域, 沥青质聚集体, 分子质量, 分子极性, 赋存状态

Abstract: Taking the group components of medium-low maturity shale oil in the third member of Paleogene Shahejie Formation in the Bohai Bay Basin as an example,a nano-scale model of shale soluble organic matter system was constructed through molecular dynamic simulation. The molecular occurrence state of shale soluble organic matter system at the nanoscale under geological conditions was investigated. And the limiting factors of shale oil movability were analyzed. The results show that:(1)The shale soluble organic matter system model consists of four group components of saturated hydrocarbons,aromatic hydrocarbons,non-hydrocarbons,asphaltenes and water,with mass fractions of 18.6%,18.9%,19.7%,38.6%,and 4.2%,respectively. The representative mol ecules for each of the four group components are nC18,1-methylphenanthrene,the aromatic bicyclic structure with carboxylate-containing long-side-chain moieties,and C58H65NS,respectively.(2)In the initial state of simu lation,shale soluble organic matter system shows the uniform distribution of the various components with high energy. As the simulation progresses,the heterogeneity of the system increases and the energy decreases. The saturated and aromatic hydrocarbon molecules diffuse more easily,while the non-hydrocarbons and asphaltenes exhibit self-aggregation phenomena,resulting in the generation of a free subsystem dominated by dispersed small molecules(with a total mass fraction of saturated and aromatic hydrocarbons of 42.9%)and an aggregation subsystem dominated by macromolecular aggregates(with a total mass fraction of non-hydrocarbons and as phaltenes of 74.3%). The free subsystem has a larger total molecular mass,66.7% of the total molecular mass of the original soluble organic matter simulation system,a faster diffusion rate,and a smaller density in the simu lated final state.(3)Molecular mass and polarity are essential factors affecting the mobility of shale oil in the nanoconfinement. Self-aggregation of polar molecules inevitably triggers heterogeneity in the soluble organic matter system,and the inhomogeneous distribution of polar molecular clusters,with adsorption in the nanopore throat space results in the blockage of shale oil transport channels,thus limiting the mobility of shale oil.

Key words: shale oil, heterogeneity, soluble organic matter system, molecular dynamics simulation, nanocon finement, asphaltene aggregates, molecular mass, molecular polarity, occurrence state

中图分类号: 

  • TE122.1
[1] 林森虎,邹才能,袁选俊,等. 美国致密油开发现状及启示[J]. 岩性油气藏,2011,23(4):25-30. LIN Senhu,ZOU Caineng,YUAN Xuanjun,et al. Status quo of tight oil exploitation in the United States and its implication [J]. Lithologic Reservoirs,2011,23(4):25-30.
[2] 张廷山,彭志,杨巍,等. 美国页岩油研究对我国的启示[J]. 岩性油气藏,2015,27(3):1-10. ZHANG Tingshan,PENG Zhi,YANG Wei,et al. Enlighten ments of American shale oil research towards China[J]. Litho logic Reservoirs,2015,27(3):1-10.
[3] 张金川,林腊梅,李玉喜,等. 页岩油分类与评价[J]. 地学前缘,2012,19(5):322-331. ZHANG Jinchuan,LIN Lamei,LI Yuxi,et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers,2012, 19(5):322-331.
[4] JARVIE D M,HILL R J,RUBLE T E,et al. Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin,2007,91(4):475-499.
[5] 杨峰,宁正福,胡昌蓬,等. 页岩储层微观孔隙结构特征[J]. 石油学报,2013,34(2):301-311. YANG Feng,NING Zhengfu,HU Changpeng,et al. Characteriza tion of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica,2013,34(2):301-311.
[6] 沈瑞,胡志明,郭和坤,等. 四川盆地长宁龙马溪组页岩赋存空间及含气规律[J]. 岩性油气藏,2018,30(5):11-17. SHEN Rui,HU Zhiming,GUO Hekun,et al. Storage space and gas content law of Longmaxi shale in Changning area,Sichuan Basin[J]. Lithologic Reservoirs,2018,30(5):11-17.
[7] 杨燕,雷天柱,关宝文,等. 滨浅湖相泥质烃源岩中不同赋存状态可溶有机质差异性研究[J]. 岩性油气藏,2015,27(2): 77-82. YANG Yan,LEI Tianzhu,GUAN Baowen,et al. Differences of solvable organic matters with different occurrence states in ar gillaceous source rocks of coastal shallow-lake facie[J]. Litho logic Reservoirs,2015,27(2):77-82.
[8] SUI Hongguang,ZHANG Fenyun,WANG Ziqiang,et al. Molecu lar simulations of oil adsorption and transport behavior in in organic shale[J]. Journal of Molecular Liquids,2020,305: 112745.
[9] 王森,冯其红,查明,等. 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟[J]. 石油勘探与开发,2015,42(6):772-778. WANG Sen,FENG Qihong,ZHA Ming,et al. Molecular dy namics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration and Development,2015,42(6):772-778.
[10] 钱门辉,蒋启贵,黎茂稳,等. 湖相页岩不同赋存状态的可溶有机质定量表征[J]. 石油实验地质,2017,39(2):278-286. QIAN Menhui,JIANG Qigui,LI Maowen,et al. Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences[J]. Petroleum Geology & Ex periment,2017,39(2):278-286.
[11] MULLINS O C. The modified Yen model[J]. Energy & Fuels, 2010,24(4):2179-2207.
[12] MULLINS O C. The asphaltenes[J]. Annual Review of Ana lytical Chemistry,2011,4(1):393-418.
[13] MULLINS O C,SABBAH H,EYSSAUTIER J,et al. Advances in asphaltene science and the Yen-Mullins model[J]. Energy & Fuels,2012,26(7):3986-4003.
[14] ZHANG Yunlong,SISKIN M,GRAY M R,et al. Mechanisms of asphaltene aggregation:Puzzles and a new hypothesis[J]. Energy & Fuels,2020,34(8):9094-9107.
[15] WU Jia,FANG Peng,WANG Xuance,et al. The potential oc currence modes of hydrocarbons in asphaltene matrix and its geochemical implications[J]. Fuel,2020,278:118233.
[16] 金之钧,王冠平,刘光祥,等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报,2021,42(7):821-835. JIN Zhijun,WANG Guanping,LIU Guangxiang,et al. Re search progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica,2021,42(7):821-835.
[17] 邱振,李建忠,吴晓智,等. 国内外致密油勘探现状、主要地质特征及差异[J]. 岩性油气藏,2015,27(4):119-126. QIU Zhen,LI Jianzhong,WU Xiaozhi,et al. Exploration sta tus,main geologic characteristics and their differences of tight oil between America and China[J]. Lithologic Reservoirs, 2015,27(4):119-126.
[18] 邹才能,朱如凯,白斌,等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报,2011,27(6):1857-1864. ZOU Caineng,ZHU Rukai,BAI Bin,et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scien tific value[J]. Acta Petrologica Sinica,2011,27(6):1857-1864.
[19] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报, 2012,33(2):173-187. ZOU Caineng,ZHU Rukai,WU Songtao,et al. Types,charac teristic,genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica,2012,33(2):173-187.
[20] 曹涛涛,邓模,刘虎,等. 可溶有机质对泥页岩储集物性的影响[J]. 岩性油气藏,2018,30(3):43-51. CAO Taotao,DENG Mo,LIU Hu,et al. Influences of soluble organic matter on reservoir properties of shale[J]. Lithologic Reservoirs,2018,30(3):43-51.
[21] 鲜成钢,李国欣,李曹雄,等. 陆相页岩油效益开发的若干问题[J]. 地球科学,2023,48(1):14-29. XIAN Chenggang,LI Guoxin,LI Caoxiong,et al. Key evalua tion aspects for economic development of continental shale oil [J]. Earth Science,2023,48(1):14-29.
[22] 梁明亮,王作栋,郑建京,等. 辽河断陷烃源岩有机地球化学特征[J]. 岩性油气藏,2014,26(4):110-116. LIANG Mingliang WANG Zuodong,ZHENG Jianjing,et al. Organic geochemistry characteristics of source rocks in Liaohe Depression[J]. Lithologic Reservoirs,2014,26(4):110-116.
[23] RADKE M,WILLSCH H,LEYTHAEUSER D,et al. Aromatic components of coal:Relation of distribution pattern to rank[J]. Geochimica et Cosmochimica Acta,1982,46(10):1831-1848.
[24] VILLEGAS O,SALVATO V G,BOUYSSIERE B,et al. Molecu lar cartography of A1 and A2 asphaltene subfractions from classi cal molecular dynamics simulations[J]. Energy & Fuels,2020, 34(11):13954-13965.
[25] TISSOT B P,WELTE D H. Petroleum formation and occur rence[M]. Berlin:Springer-Verlag,2013:254-267.
[26] BÉNICHOU O,ILLIEN P,OSHANIN G,et al. Diffusion and subdiffusion of interacting particles on comblike structures[J]. Physical Review Letters,2015,115(22):220601.
[27] XU Wenyi,QIU Xin,XIAO Shanglin,et al. Molecular dynamic investigations on the adhesion behaviors of asphalt masticaggregate interface[J]. Materials,2020,13(22):5061.
[28] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980,72(4):2384-2393.
[29] KADOURA A,NAIR A K N,SUN Shuyu. Adsorption of carbon dioxide,methane,and their mixture by montmorillonite in the presence of water[J]. Microporous and Mesoporous Materials, 2016,225:331-341.
[30] ROTENBERG B. Use the force! Reduced variance estimators for densities,radial distribution functions and local mobilities in molecular simulations[J]. The Journal of Chemical Physics, 2020,153(15):1-11.
[31] EVDOKIMOV I N,FESAN A A. Multi-step formation of as phaltene colloids in dilute solutions[J]. Colloids and Surfaces A:Physicochemical and EngineeringAspects,2016,492:170-180.
[32] GRAY M R,TYKWINSKI R R,STRYKER J M,et al. Supramo lecular assembly model for aggregation of petroleum asphaltenes [J]. Energy & Fuels,2011,25(7):3125-3134.
[33] SCHULZ F,COMMODO M,KAISER K,et al. Insights into in cipient soot formation by atomic force microscopy[J]. Proceed ings of the Combustion Institute,2019,37(1):885-892.
[34] BOWMAN A L,MUN S,NOURANIAN S,et al. Free volume and internal structural evolution during creep in model amorphous polyethylene by molecular dynamics simulations[J]. Polymer, 2019,170:85-100.
[35] 卢双舫,薛海涛,王民,等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报,2016,37(10):1309-1322. LU Shuangfang,XUE Haitao,WANG Min,et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica,2016,37(10):1309-1322.
[36] 孙丽娜,张明峰,吴陈君,等. 油页岩生排烃模拟实验中不同液态烃产物特征[J]. 岩性油气藏,2017,29(6):23-31. SUN Lina,ZHANG Mingfeng,WU Chenjun,et al. Features of liquid hydrocarbon in different states in oil shale during hy drous pyrolysis[J]. Lithologic Reservoirs,2017,29(6):23-31.
[37] 王万春,吉利明,宋董军,等. 不同比例砂岩/油页岩热模拟实验滞留油量及其地质意义:以鄂尔多斯盆地三叠系延长组7段为例[J]. 天然气地球科学,2021,32(8):1142-1150. WANG Wanchun,JI Liming,SONG Dongjun,et al. Residual oil from pyrolysis experiments of different sandstone/oil shale ratios and its geological significance:Case study of the Upper Triassic Chang 7 member of the Ordos Basin[J]. Natural Gas Geoscience,2021,32(8):1142-1150.
[38] PEPPER A S,CORVI P J. Simple kinetic models of petroleum formation. Part Ⅰ:Oil and gas generation from kerogen[J]. Ma rine and Petroleum Geology,1995,12(3):291-319.
[39] PEPPER A S,CORVI P J. Simple kinetic models of petroleum formation. Part Ⅲ:Modelling an open system[J]. Marine and Petroleum Geology,1995,12(4):417-452.
[40] 曹仁义,黄涛,程林松,等. 水驱油藏中原油极性物质对吸附和润湿性影响的分子模拟[J]. 计算物理,2021,38(5):595-602. CAO Renyi,HUANG Tao,CHENG Linsong,et al. Influence of polar substance of crude oil on adsorption and wettability in water flooding reservoir:Molecular simulation[J]. Chinese Journal of Computational Physics,2021,38(5):595-602.
[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[3] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[4] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[5] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[6] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[7] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[8] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[9] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[10] 邓远, 陈轩, 覃建华, 李映艳, 何吉祥, 陶鑫, 尹太举, 高阳. 吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J]. 岩性油气藏, 2024, 36(1): 136-144.
[11] 刘海磊, 朱永才, 刘龙松, 尹鹤, 王学勇, 杜小弟. 准噶尔盆地阜康断裂带上盘二叠系芦草沟组页岩油地质特征及勘探潜力[J]. 岩性油气藏, 2023, 35(4): 90-101.
[12] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[13] 柳忠泉, 赵乐强, 曾治平, 田继军, 李正强, 罗锦昌, 胡美玲. 准噶尔盆地阜康断裂带二叠系芦草沟组页岩油成藏条件[J]. 岩性油气藏, 2023, 35(3): 126-137.
[14] 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
[15] 完颜泽, 龙国徽, 杨巍, 柴京超, 马新民, 唐丽, 赵健, 李海鹏. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[5] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[6] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[7] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[8] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[9] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[10] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .