岩性油气藏 ›› 2026, Vol. 38 ›› Issue (1): 162–171.doi: 10.12108/yxyqc.20260114

• 地质勘探 • 上一篇    

鄂尔多斯盆地米脂北地区石炭系本溪组煤岩气储层地震预测技术

张盟勃1,2(), 彭剑康1(), 崔晓杰1,2, 张栋1, 倪娜1, 龙盛芳1, 魏朋辉3   

  1. 1 中国石油长庆油田公司 勘探开发研究院西安 710018
    2 低渗透油气田勘探开发国家工程实验室西安 710018
    3 北京源烃泰克科技有限公司北京 100102
  • 收稿日期:2025-04-01 修回日期:2025-05-22 出版日期:2026-01-01 发布日期:2026-01-23
  • 第一作者:张盟勃(1978—),男,高级工程师,主要从事地震岩石物理、地震资料解释、页岩油及煤岩气综合研究等方面的研究工作。地址:(710018)陕西省西安市未央区未央路151号。Email:zmb_cq@petrochina.com.cn
  • 通信作者: 彭剑康
  • 基金资助:
    中国石油集团公司重大专项“深地煤岩气成藏理论与效益开发技术研究”(2023ZZ18YJ03);长庆油田公司重大科技专项“鄂尔多斯盆地深层煤岩气赋存机理、富集规律及有效提产关键技术攻关”(2023DZZ01)

Seismic prediction technology for coal rock gas reservoir of Carboniferous Benxi Formation in northern Mizhi area, Ordos Basin

ZHANG Mengbo1,2(), PENG Jiankang1(), CUI Xiaojie1,2, ZHANG Dong1, NI Na1, LONG Shengfang1, WEI Penghui3   

  1. 1 Research Institute of Exploration and Development, PetroChina Changqing Oilfield, Xi’an 710018, China
    2 National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi’an 710018, China
    3 Geoscience Solutions, Beijing 100102, China
  • Received:2025-04-01 Revised:2025-05-22 Online:2026-01-01 Published:2026-01-23
  • Contact: PENG Jiankang E-mail:zmb_cq@petrochina.com.cn;15010308496@163.com

摘要:

通过井-震标定、建立不同围岩岩性-煤岩模型、波动方程正演模拟等方法,对鄂尔多斯盆地米脂北地区石炭系本溪组围岩岩性、煤岩厚度及其地震响应特征进行了分析,并对振幅拟合法、阻抗反演法和反射系数反演法3种煤岩气储层厚度预测方法进行了对比评价。研究结果表明:①鄂尔多斯盆地米脂地区石炭系本溪组煤岩气储层地质条件复杂,上覆岩性主要为砂岩、灰岩和泥岩,煤岩与围岩地层的物性具有明显差异,前者具有低自然伽马、低密度、高中子、高声波时差、高电阻率的特征;不同围岩对煤岩层的地震响应特征影响较大,围岩的平面分布会影响煤岩厚度预测精度。②对不同岩性组合进行波动方程正演模拟过程中,当煤岩厚度小于调谐厚度12.5 m时,振幅值随煤岩厚度增加而增强;当煤岩厚度达到12.5 m时,振幅值达到峰值;当煤岩厚度大于12.5 m时,随着煤岩厚度增加,振幅值开始缓慢降低。③反射系数反演法适用于煤岩气藏评价和开发阶段,煤岩顶底再解释技术受振幅影响较小,研究区煤岩气储层预测厚度与实际厚度吻合度最高,达到88.9%。

关键词: 煤岩气, 地震预测, 正演模拟, 振幅拟合, 阻抗反演, 反射系数反演, 本溪组, 石炭系, 米脂北地区, 鄂尔多斯盆地

Abstract:

Through well-to-seismic calibration, establishment of different surrounding rock lithology-coal rock models, and wave equation forward modeling, the lithologies, coal rock thickness, and seismic response characteristics of Carboniferous Benxi Formation surrounding rock in northern Mizhi area of Ordos Basin were analyzed. Three thickness prediction methods of coal rock gas reservoir, such as amplitude fitting method, impe-dance inversion method, and reflection coefficient inversion method, were contrasted and evaluated. The results show that: (1) The geological conditions of Carboniferous Benxi Formation coal rock gas reservoir in Mizhi area are complex. The overlying lithology are mainly sandstone, limestone, and mudstone. Physical properties of coal rock and surrounding rock strata are significant different, coal rock are with characteristics of low natural gamma, low density, high neutron, high acoustic time difference, and high resistivity. Different surrounding rocks have a significant impact on seismic response characteristics of coal rock layers, and the planar distribution of surrounding rocks can affect the accuracy of coal seam thickness prediction. (2) During wave equation forward modeling for different lithological combinations, when the coal rock thickness is less than the tuned thickness of 12.5 m, the amplitude value increases with the increase of coal rock thickness.When the thickness of coal rock reaches 12.5 m, the amplitude value reaches its peak.When the thickness of coal rock is greater than 12.5 m, the amplitude value begins to slowly decrease as the thickness of coal rock increases. (3) The reflection coefficient inversion method is suitable for the evaluation and development stages of coal rock gas reservoirs. The coal rock top and bottom re-interpretation technology is less affected by amplitude,and the predicted thickness of coal rock gas reservoir in the study area shows the highest consistency with the actual thickness, reaching 88.9%.

Key words: coal rock gas, seismic prediction, forward modeling, amplitude fitting, impedance inversion, reflection coefficient inversion, Benxi Formation, Carboniferous, northern Mizhi area, Ordos Basin

中图分类号: 

  • TE122.2

图1

鄂尔多斯盆地米脂北地区构造位置(a)及本溪组—山西组岩性地层综合柱状图(b)"

图2

鄂尔多斯盆地米脂北地区石炭系本溪组8号煤岩连井对比"

图3

鄂尔多斯盆地米脂北地区石炭系本溪组不同岩性声波时差对比"

图4

鄂尔多斯盆地米脂北地区石炭系本溪组不同岩性密度对比"

图5

鄂尔多斯盆地米脂北地区石炭系本溪组8号煤顶岩相分布特征"

图6

鄂尔多斯盆地米脂北地区石炭系本溪组井震联合标定"

表1

鄂尔多斯盆地米脂北地区石炭系本溪组不同地层岩性组合模型参数"

图7

鄂尔多斯盆地米脂北地区石炭系本溪组煤岩与不同围岩模型正演结果"

图8

鄂尔多斯盆地米脂北地区石炭系本溪组煤岩不同模型的振幅与厚度相关性"

图9

鄂尔多斯盆地米脂北地区石炭系本溪组8号煤岩厚度与地震均方根振幅拟合曲线"

图10

采用地震反射振幅属性拟合法预测的鄂尔多斯盆地米脂北地区石炭系本溪组8号煤岩厚度平面分布特征"

图11

鄂尔多斯盆地米脂北地区石炭系本溪组不同岩性纵波阻抗对比"

图12

采用阻抗反演法预测的鄂尔多斯盆地米脂北地区石炭系本溪组8号煤岩厚度平面分布特征"

图13

鄂尔多斯盆地米脂北地区石炭系本溪组常规地震剖面(a)与反射系数反演剖面(b)对比(剖面位置见图14)"

图14

采用反射系数反演法预测的鄂尔多斯盆地米脂北地区石炭系本溪组8号煤岩厚度平面分布特征"

图15

鄂尔多斯盆地米脂北地区石炭系本溪组8号煤岩预测厚度与实钻煤岩厚度对比"

[1] 接铭训. 鄂尔多斯盆地东缘煤层气勘探开发前景[J]. 天然气工业, 2010, 30(6):1-6.
JIE Mingxun. Prospects in coalbed methane gas exploration and production in the eastern Ordos Basin[J]. Natural Gas Industry, 2010, 30(6):1-6.
[2] 张国良, 贾高龙. 鄂尔多斯盆地东缘煤层气地质及勘探开发方向[J]. 中国煤层气, 2004, 1(1):17-20.
ZHANG Guoliang, JIA Gaolong. CBM geology and orientation of exploration and development of eastern fringe of Ordos Basin[J]. China Coalbed Methane, 2004, 1(1):17-20.
[3] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1):32-44.
doi: 10.12108/yxyqc.20240104
ZHAI Yonghe, HE Dengfa, KAI Baize. Tectonic-depositional environment and prototype basin evolution of Middle-Late Per-mian in Ordos Basin and adjacent areas[J]. Lithologic Reservoirs, 2024, 36(1):32-44.
doi: 10.12108/yxyqc.20240104
[4] 赵喆, 徐旺林, 赵振宇, 等. 鄂尔多斯盆地本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发, 2024, 51(2):234-247.
doi: 10.11698/PED.20230679
ZHAO Zhe, XU Wanglin, ZHAO Zhenyu, et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development, 2024, 51(2):234-247.
[5] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1):115-130.
XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1):115-130.
[6] 江同文, 熊先钺, 金亦秋. 深部煤层气地质特征与开发对策[J]. 石油学报, 2023, 44(11):1918-1930.
doi: 10.7623/syxb202311013
JIANG Tongwen, XIONG Xianyue, JIN Yiqiu. Geological cha-racteristics and development countermeasures of deep coalbed methane[J]. Acta Petrolei Sinica, 2023, 44(11):1918-1930.
doi: 10.7623/syxb202311013
[7] 李国欣, 贾承造, 赵群, 等. 煤岩气成藏机理与煤系全油气系统[J]. 石油勘探与开发, 2025, 52(1):29-43.
doi: 10.11698/PED.20240790
LI Guoxin, JIA Chengzao, ZHAO Qun, et al. Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures[J]. Petroleum Exploration and Development, 2025, 52(1):29-43.
[8] 牛小兵, 范立勇, 闫小雄, 等. 鄂尔多斯盆地煤岩气富集条件及资源潜力[J]. 石油勘探与开发, 2024, 51(5):972-985.
doi: 10.11698/PED.20230656
NIU Xiaobing, FAN Liyong, YAN Xiaoxiong, et al. Enrichment conditions and resource potential of coal-rock gas in Ordos Basin,NW China[J]. Petroleum Exploration and Development, 2024, 51(5):972-985.
[9] 胡朝元, 彭苏萍, 赵士华, 等. 煤层气储层参数多信息综合定量预测方法[J]. 煤田地质与勘探, 2005, 33(1):28-31.
HU Chaoyuan, PENG Suping, ZHAO Shihua, et al. The qualitative prediction of the coalbed gas reservoir parameters[J]. Coal Geology & Exploration, 2005, 33(1):28-31.
[10] 毕臣臣, 谢玮, 王彦春, 等. 四川盆地页岩储层正演模拟地震响应特征[J]. 科学技术与工程, 2020, 20(16):6350-6356.
BI Chenchen, XIE Wei, WANG Yanchun, et al. Seismic response characteristics of forward modeling of shale reservoirs in Sichuan Basin[J]. Science Technology and Engineering, 2020, 20(16):6350-6356.
[11] 李贵红. 鄂尔多斯盆地东缘煤层气有利区块优选[J]. 煤田地质与勘探, 2015, 43(2):28-32.
LI Guihong. Selection of the favorable coalbed methane (CBM) blocks in eastern Ordos basin[J]. Coal Geology & Exploration, 2015, 43(2):28-32.
[12] 郭少斌, 王义刚. 鄂尔多斯盆地石炭系本溪组页岩气成藏条件及勘探潜力[J]. 石油学报, 2013, 34(3):445-452.
doi: 10.7623/syxb201303004
GUO Shaobin, WANG Yigang. Shale gas accumulation conditions and exploration potential of Carboniferous Benxi Formation in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(3):445-452.
doi: 10.7623/syxb201303004
[13] 肖文华, 杨军, 严宝年, 等. 鄂尔多斯盆地环庆地区三叠系长8致密砂岩储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(3):23-32.
doi: 10.12108/yxyqc.20250303
XIAO Wenhua, YANG Jun, YAN Baonian, et al. Characteristics and main controlling factors of Triassic Chang 8 tight sand‐stone reservoir in Huanqing area,Ordos Basin[J]. Lithologic Reservoirs, 2025, 37(3):23-32.
doi: 10.12108/yxyqc.20250303
[14] 席颖洋, 文志刚, 赵伟波, 等. 鄂尔多斯盆地东部石炭系本溪组页岩气地质特征及富集规律[J]. 天然气地球科学, 2022, 33(12):1936-1950.
doi: 10.11764/j.issn.1672-1926.2022.06.008
XI Yingyang, WEN Zhigang, ZHAO Weibo, et al. Study on geological characteristics and enrichment law of shale gas of Carboniferous Benxi Formation in eastern Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(12):1936-1950.
doi: 10.11764/j.issn.1672-1926.2022.06.008
[15] 王子昕, 柳广弟, 袁光杰, 等. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5):133-144.
doi: 10.12108/yxyqc.20240513
WANG Zixin, LIU Guangdi, YUAN Guangjie, et al. Characte-ristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin[J]. Lithologic Reservoirs, 2024, 36(5):133-144.
doi: 10.12108/yxyqc.20240513
[16] 沈玉林, 郭英海, 李壮福, 等. 鄂尔多斯盆地东缘本溪组一太原组层序地层特征[J]. 地球学报, 2009, 30(2):187-193.
SHEN Yulin, GUO Yinghai, LI Zhuangfu, et al. Sequence stratigraphy of Benxi-Taiyuan Formation in eastern Ordos Basin[J]. Acta Geoscientica Sinica, 2009, 30(2):187-193.
[17] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36 (5):15-24.
doi: 10.12108/yxyqc.20240502
KONG Lingfeng, XU Jiafang, LIU Ding. Pore structure characteristics and dehydration evolution of lignite reservoirs of Jurassic Xishanyao Formation in Santanghu Basin[J]. Lithologic Reservoirs, 2024, 36(5):15-24.
doi: 10.12108/yxyqc.20240502
[18] 李启晖, 任大忠, 甯波, 等. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2):76-88.
doi: 10.12108/yxyqc.20240208
LI Qihui, REN Dazhong, NING Bo, et al. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin[J]. Lithologic Reservoirs, 2024, 36(2):76-88.
doi: 10.12108/yxyqc.20240208
[19] 王成旺, 冯延青, 杨海星, 等. 鄂尔多斯盆地韩城区块煤层气老井挖潜技术及应用[J]. 煤田地质与勘探, 2018, 46(5):212-218.
WANG Chengwang, FENG Yanqing, YANG Haixing, et al. Potential-tapping technology and its application in old CBM wells in Hancheng block of Ordos basin[J]. Coal Geology & Exploration, 2018, 46(5):212-218.
[20] 季敏, 陈双全. 基于数据驱动的合成地震记录技术及其应用研究[J]. 石油物探, 2011, 50(4):373-377.
doi: 10.3969/j.issn.1000-1441.2011.04.010
JI Min, CHEN Shuangquan. Data-driven synthetic seismogram technique and its application[J]. Geophysical Prospecting for Petroleum, 2011, 50(4):373-377.
doi: 10.3969/j.issn.1000-1441.2011.04.010
[21] 陈勇, 关达, 陈洪德, 等. 地震属性技术在煤层及煤层气储层预测中的应用[J]. 石油天然气学报, 2014, 36(7):65-69.
CHEN Yong, GUAN Da, CHEN Hongde, et al. Application of seismic attribute analysis technology in predicting coalbed and coalbed gas reservoir[J]. Journal of Oil and Gas Technology, 2014, 36(7):65-69.
[22] 李蔚林, 赵嘉良, 阮柳谭, 等. 基于空间自回归插值方法的煤层厚度预测研究[J]. 煤炭工程, 2024, 56(12):112-119.
LI Weilin, ZHAO Jialiang, RUAN Liutan, et al. Prediction of coal seam thickness based on spatial autoregressive interpolation[J]. Coal Engineering, 2024, 56(12):112-119.
[23] 汪玉玲, 解建建, 刘恋, 等. 约束稀疏脉冲反演在煤层厚度预测中的应用[J]. 山西煤炭, 2023, 43(4):115-121.
WANG Yuling, XIE Jianjian, LIU Lian, et al. Application of constrained sparse spike inversion in coal thickness prediction[J]. Shanxi Coal, 2023, 43(4):115-121.
[24] 张兆辉, 张皎生, 刘俊刚, 等. 鄂尔多斯盆地陇东地区三叠系长81亚段岩石相测井识别及勘探意义[J]. 岩性油气藏, 2025, 37(3):95-107.
doi: 10.12108/yxyqc.20250309
ZHANG Zhaohui, ZHANG Jiaosheng, LIU Jungang, et al. Lithofacies identification using conventional logging curves and its exploration significance,Triassic Chang 81 sub-member,Longdong area,Ordos Basin[J]. Lithologic Reservoirs, 2025, 37(3):95-107.
doi: 10.12108/yxyqc.20250309
[25] 彭真, 许辉群, 张伟. 自适应时窗多道相关的叠后地震波阻抗反演方法[J]. 石油地球物理勘探, 2024, 59(4):828-836.
PENG Zhen, XU Huiqun, ZHANG Wei. Post-stack seismic impedance inversion method with multi-channel correlation under adaptive window[J]. Oil Geophysical Prospecting, 2024, 59(4):828-836.
[26] 张雨强, 文晓涛, 吴昊, 等. 基于LP拟范数稀疏约束和交替方向乘子算法的波阻抗反演[J]. 石油物探, 2022, 61(5):856-864.
doi: 10.3969/j.issn.1000-1441.2022.05.010
ZHANG Yuqiang, WEN Xiaotao, WU Hao, et al. Seismic acoustic impedance inversion using LP quasi-norm sparse constraint and alternating direction multiplier algorithm[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):856-864.
doi: 10.3969/j.issn.1000-1441.2022.05.010
[27] 周自强, 朱正平, 潘仁芳, 等. 基于波形相控反演的致密砂岩储层模拟预测方法:以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5):77-86.
doi: 10.12108/yxyqc.20240508
ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, et al. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag,Huanghua Depression[J]. Lithologic Reservoirs, 2024, 36(5):77-86.
doi: 10.12108/yxyqc.20240508
[28] 杜昕, 范廷恩, 范洪军, 等. 少井背景下基于稀疏层反射系数反演的薄层预测[J]. 石油地球物理勘探, 2021, 56(2):356-363.
DU Xin, FAN Tingen, FAN Hongjun, et al. Prediction of thin reservoirs with less well data based on sparse-layer reflectivity inversion[J]. Oil Geophysical Prospecting, 2021, 56(2):356-363.
[29] 张营, 杨立英. 反射系数反演方法研究及其在薄层识别中的应用[J]. 山东化工, 2015, 44(4):95-97.
ZHANG Ying, YANG Liying. The reflectivity inversion and its application in thin-bed[J]. Shandong Chemical Industry, 2015, 44(4):95-97.
[30] 纪永祯, 张渝悦, 朱立华, 等. 多道随机稀疏反射系数反演[J]. 石油物探, 2020, 59(6):912-917.
doi: 10.3969/j.issn.1000-1441.2020.06.009
JI Yongzhen, ZHANG Yuyue, ZHU Lihua, et al. Multi-trace stochastic sparse-spike inversion for reflectivity[J]. Geophysical Prospecting For Petroleum, 2020, 59(6):912-917.
doi: 10.3969/j.issn.1000-1441.2020.06.009
[1] 陈旋, 徐雄飞, 张华, 苟红光, 张亦婷, 尤帆, 程祎, 孙玉峰. 准噶尔盆地东部石炭系火山岩储层特征及有利区预测[J]. 岩性油气藏, 2025, 37(6): 13-27.
[2] 邱争科, 侯文锋, 黄焕, 高如奇, 周林, 张媛媚, 田进山, 李昊. 准噶尔盆地克-百断裂带六-七区石炭系火山机构特征及成藏模式[J]. 岩性油气藏, 2025, 37(6): 48-58.
[3] 苏帅, 屈红军, 尹虎, 张磊岗, 杨晓锋. 致密砂岩储层孔喉结构分形特征及其对储层物性的影响——以鄂尔多斯盆地富县地区三叠系长8段为例[J]. 岩性油气藏, 2025, 37(6): 88-98.
[4] 陆江, 王健, 吴楠, 李程善, 冯子飞. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力[J]. 岩性油气藏, 2025, 37(5): 34-48.
[5] 赵润冬, 王锦昌, 罗懿, 周瑞立, 周舰. 鄂尔多斯盆地大牛地气田气水同产定容气藏动态储量计算新方法[J]. 岩性油气藏, 2025, 37(5): 186-192.
[6] 田继先, 石正灏, 李剑, 沙威, 蒋峥文, 杨磊, 鱼雪, 蒲永霞. 柴达木盆地侏罗系煤岩气成藏条件与勘探潜力[J]. 岩性油气藏, 2025, 37(4): 17-25.
[7] 王青, 田冲, 罗超, 张景缘, 杨雪, 吴伟, 陶夏妍. 四川盆地遂宁—合江地区二叠系龙潭组煤岩气储层特征及勘探前景[J]. 岩性油气藏, 2025, 37(4): 26-37.
[8] 李振明, 贾存善, 王斌, 宋振响, 邱岐, 王继远, 徐陈杰, 崔钰瑶. 准噶尔盆地东部石钱滩凹陷石炭系石钱滩组烃源岩特征及资源潜力[J]. 岩性油气藏, 2025, 37(4): 115-126.
[9] 王永刚, 杜广宏, 何润, 瞿长, 佘钰蔚, 黄诚. 鄂尔多斯盆地陇东地区下古生界风化壳储层地球物理识别及分布预测[J]. 岩性油气藏, 2025, 37(4): 127-135.
[10] 李庚桐, 何登发. 第聂伯—顿涅茨盆地坳拉槽发育特征及油气成藏条件[J]. 岩性油气藏, 2025, 37(4): 169-183.
[11] 肖文华, 杨军, 严宝年, 王建国, 李少勇, 马淇琳, 李宗霖, 薛欢召. 鄂尔多斯盆地环庆地区三叠系长8致密砂岩储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(3): 23-32.
[12] 张兆辉, 张皎生, 刘俊刚, 邹建栋, 张建伍, 廖建波, 李智勇, 赵雯雯. 鄂尔多斯盆地陇东地区三叠系长81亚段岩石相测井识别及勘探意义[J]. 岩性油气藏, 2025, 37(3): 95-107.
[13] 刘迎宝, 李元昊, 翟文彬, 赵文暄, 李哲, 杨龙华, 郭雅倩. 极缓坡湖盆浅水三角洲前缘砂体类型及成因模式——以鄂尔多斯盆地郝滩地区三叠系长81亚段为例[J]. 岩性油气藏, 2025, 37(3): 140-152.
[14] 梁锋, 曹哲. 鄂尔多斯盆地华池地区三叠系长7页岩油储层特征、形成环境及富集模式[J]. 岩性油气藏, 2025, 37(1): 24-40.
[15] 陈鹏, 武小宁, 林煜, 钟厚财, 张洁, 黄友华, 岳纹, 冷平. 准噶尔盆地车排子凸起石炭系构造特征与油气富集规律[J]. 岩性油气藏, 2025, 37(1): 68-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!