Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (5): 133-142.doi: 10.12108/yxyqc.20200514

• EXPLORATION TECHNOLOGY • Previous Articles     Next Articles

Preconditioning elastic least-squares reverse time migration

LIU Mengli, XU Xingrong, WANG Xiaowei, HU Shuhua, LIU Jintao   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2019-12-24 Revised:2020-02-28 Online:2020-10-01 Published:2020-08-08

Abstract: Compared to P-wave seismic exploration,multi-wave seismic exploration can attain more information of underground medium. Elastic reverse time migration is a more accurate method for imaging. Leastsquares inverse time migration(LSRTM)treats the migration imaging as an inversion problem in the sense of least squares, which is a correction of the migration imaging process and results, and can provide reflectance images with higher resolution for lithologic reservoir estimation,which has become the trend of imaging method. Based on the establishment of a linear first-order velocity-stress elastic wave equation,the application of adjoint state method helped to reconstruct the reverse-time migration algorithm,and by introducing the theory of leastsquares and using the inverse of approximate Hessian matrix to precondition the gradient,preconditioning elastic least-squares reverse time migration(P-ELSRTM)was implemented. The numerical tests on SEG/EAGE 2-D salt dome model show that compared with the conventional elastic least-squares reverse time migration(ELSRTM), P-ELSRTM can image with higher resolution,better amplitude preservation and faster convergence. In addition,P-ELSRTM is more adaptable to seismic data with random noise.

Key words: least-squares migration, elastic reverse time migration, amplitude preservation

CLC Number: 

  • P631.4
[1] TENG Y C, DAI T F. Finite-element prestack reverse-time migration for elastic waves. Geophysical Prospecting for Petroleum, 1988, 5(1):1204-1208.
[2] SUN R, WANG A. Scalar reverse-time depth migration of prestack elastic seismic data. Geophysics, 2001, 66(5):1519.
[3] DUAN Y, SAVA P. Scalar imaging condition for elastic reverse time migration. Geophysics, 2015, 80(4):S127-S136.
[4] 刘红伟, 李博, 刘洪, 等. 地震叠前逆时偏移高阶有限差分算法及GPU实现. 地球物理学报, 2010, 53(7):1725-1733. LIU H W, LI B, LIU H, et al. The algorithm of high order finite difference pre-stack reverse time migration and GPU implementation. Chinese Journal of Geophysics, 2010, 53(7):1725-1733.
[5] 徐兴荣, 王西文, 王宇超, 等.基于波场分离理论的逆时偏移成像条件研究及应用. 地球物理学进展, 2012, 27(5):2084-2090. XU X R, WANG X W, WANG Y C, et al. Study and application of imaging condition for reverse-time migration based on wave-fields separation. Progress in Geophysics, 2012, 27(5):2084-2090.
[6] 陈可洋.逆时成像技术在大庆探区复杂构造成像中的应用. 岩性油气藏, 2017, 29(6):91-100. CHEN K Y. Application of reverse-time migration technology to complex structural imaging in Daqing exploration area. Lithologic Reservoirs, 2017, 29(6):91-100.
[7] 陈可洋. 几种地震观测方式的逆时成像分析. 岩性油气藏, 2013, 25(1):95-101. CHEN K Y. Reverse-time migration analysis of several seismic observation models. Lithologic Reservoirs, 2013, 25(1):95-101.
[8] CHANG W F, MCMECHAN G A. Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition. Geophysics, 1986, 51(1):139-140.
[9] CHANG W F, MCMECHAN G A. Elastic reverse-time migration. Geophysics, 1987, 52(3):243-256.
[10] CHANG W F, MCMECHAN G A. 3-D elastic prestack, reversetime depth migration. Geophysics, 1994, 59(4):597-609.
[11] 董良国, 郭晓玲, 吴晓丰, 等. 起伏地表弹性波传播有限差分法数值模拟. 天然气工业, 2007, 27(10):38-41. DONG L G, GUO X L, WU X F, et al. Finite difference numerical simulation for the elastic wave propagation in rugged topography. Natural Gas Industry, 2007, 27(10):38-41.
[12] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟. 岩性油气藏, 2014, 26(5):91-96. CHEN K Y. Wave field separating numerical simulation of anisotropic elastic medium directional one-way wave. Lithologic Reservoirs, 2014, 26(5):91-96.
[13] 王维红, 张伟, 石颖, 等. 基于波场分离的弹性波逆时偏移. 地球物理学报, 2017, 60(7):2813-2824. WANG W H, ZHANG W, SHI Y, et al. Elastic reverse time migration based on wavefield separation. Chinese Journal of Geophysics, 2017, 60(7):2813-2824.
[14] 张伟, 石颖. 矢量分离纵横波场的弹性波逆时偏移.地球物理学进展, 2017, 32(4):1728-1734. ZHANG W, SHI Y. Elastic reverse time migration based on vector decomposition of P-and S-wavefields. Progress in Geophysics, 2017, 32(4):1728-1734.
[15] 杜启振, 秦童. 横向各向同性介质弹性波多分量叠前逆时偏移. 地球物理学报, 2009, 52(3):801-807. DU Q Z, QIN T. Multicomponent prestack reverse-time migration of elastic waves in transverse isotropic medium. Chinese Journal of Geophysics, 2009, 52(3):801-807.
[16] 张晓语, 杜启振, 张树奎, 等.基于一阶弹性波方程的能量互相关成像条件.地球物理学报, 2019, 62(1):289-297. ZHANG X Y, DU Q Z, ZHANG S K, et al. The energy crosscorrelation imaging based on first-order elastic wave equations. Chinese Journal of Geophysics, 2019, 62(1):289-297.
[17] 张智, 刘有山, 徐涛, 等.弹性波逆时偏移中的稳定激发振幅成像条件. 地球物理学报, 2013, 56(10):3523-3533. ZHANG Z, LIU Y S, XU T, et al. A stable excitation amplitude imaging condition for reverse time migration in elastic wave equation. Chinese Journal of Geophysics, 2013, 56(10):3523-3533.
[18] 王华忠, 王雄文, 王西文. 地震波反演的基本问题分析. 岩性油气藏, 2012, 24(6):1-9.WANG H Z, WANG X W, WANG X W. Analysis of the basic problems of seismic wave inversion. Lithologic Reservoirs, 2012, 24(6):1-9.
[19] 任浩然, 王华忠, 黄光辉. 地震波反演成像方法的理论分析与对比. 岩性油气藏, 2012, 24(5):12-18. REN H R, WANG H Z, HUANG G H. Theoretical analysis and comparison of seismic wave inversion and imaging methods. Lithologic Reservoirs, 2012, 24(5):12-18.
[20] 李庆洋, 黄建平, 李振春. 基于Student's t分布的不依赖子波最小二乘逆时偏移. 地球物理学报, 2017, 60(12):4790-4800. LI Q Y, HUANG J P, LI Z C. Source-independent least-squares reverse time migration using student's t distribution. Chinese Journal of Geophysics, 2017, 60(12):4790-4800.
[21] NEMETH T, WU C, SCHUSTER G T. Least-squares migration of incomplete reflection data. Geophysics, 1999, 64(1):208-221.
[22] LI C, HUANG J P, LI Z C, et al. Regularized least-squares migration of simultaneous-source seismic data with adaptive singular spectrum analysis. Petroleum Science, 2017, 1(14):61-74.
[23] 李振春, 李闯, 黄建平, 等. 基于先验模型约束的最小二乘逆时偏移方法. 石油地球物理勘探, 2016, 51(4):738-744. LI Z C, LI C, HUANG J P, et al. Regularized least-squares reverse time migration with prior model. Oil Geophysical Prospecting, 2016, 51(4):738-744.
[24] 李闯, 黄建平, 李振春, 等. 预条件最小二乘逆时偏移方法. 石油地球物理勘探, 2016, 51(3):513-520. LI C, HUANG J P, LI Z C, et al. Preconditioned least-squares reverse time migration. Oil Geophysical Prospecting, 2016, 51(3):513-520.
[25] 刘梦丽, 黄建平, 李闯, 等. 基于角度滤波成像的最小二乘逆时偏移. 石油地球物理勘探, 2018, 53(3):469-477. LIU M L, HUANG J P, LI C, et al. Least-squares reverse time migration based on the angular filtering imaging condition. Oil Geophysical Prospecting, 2018, 53(3):469-477.
[26] DAI W, BOONYASIRIWAT C, SCHUSTER G T. Multi-source least-squares reverse time migration. Geophysical Prospecting, 2012, 60(4):681-695.
[27] DAI W, SCHUSTER G T. Plane-wave least-squares reversetime migration. Geophysics, 2013, 78(4):S165-S177.
[28] 黄建平, 曹晓莉, 李振春, 等.最小二乘逆时偏移在近地表高精度成像中的应用. 石油地球物理勘探, 2014, 49(1):107-112. HUANG J P, CAO X L, LI Z C, et al. Least square reverse time migration in high resolution imaging of near surface. Oil Geophysical Prospecting, 2014, 49(1):107-112.
[29] 李振春, 郭振波, 田坤. 黏声介质最小平方逆时偏移. 地球物理学报, 2014, 57(1):214-228. LI Z C, GUO Z B, TIAN K. Least-squares reverse time migration in visco-acoustic media. Chinese Journal of Geophysics, 2014, 57(1):214-228.
[30] GU B L, LI Z C, YANG P, et al. Elastic least-squares reverse time migration with hybrid l1/l2 misfit function. Geophysics, 2017, 82(3):S271-S291.
[31] REN Z M, LIU Y, SEN M K. Least-squares reverse time migration in elastic media. Geophysical Journal International, 2017, 208(2):1103-1125.
[32] LI C, GAO J, GAO Z, et al. Periodic plane-wave least-squares reverse time migration for diffractions. Geophysics, 2020, 85(4):S185-S198.
[33] LI C, GAO J, WANG R, et al. Enhancing subsurface scatters using reflection-damped plane-wave least-squares reverse time migration. IEEE Geoence and Remote Sensing Letters, 2020, 17(4):706-710.
[34] YANG J D, ZHU H J. Viscoacoustic least-squares reverse-time migration using a time-domain complex-valued wave equation. Geophysics, 2019, 84(5):1-130.
[35] 郭旭, 黄建平, 李振春, 等. 基于一阶速度-应力方程的VTI介质最小二乘逆时偏移. 地球物理学报, 2019,62(6):2188-2202. GUO X, HUANG J P, LI Z C, et al. Least-squares reverse time migration based on first-order velocity-stress wave equation in VTI media. Chinese Journal of Geophysics(in Chinese), 2019, 62(6):2188-2202.
[1] ZHAO Yan, MAO Ningbo, CHEN Xu. Self-adaptive gain-limit inverse Q filtering method based on SNR in time-frequency domain [J]. Lithologic Reservoirs, 2021, 33(4): 85-92.
[2] MENG Huijie, SU Qin, ZENG Huahui, XU Xingrong, LIU Huan, ZHANG Xiaomei. Blind source separation of seismic signals based on ICA algorithm and its application [J]. Lithologic Reservoirs, 2021, 33(4): 93-100.
[3] MA Qiaoyu, ZHANG Xin, ZHANG Chunlei, ZHOU Heng, WU Zhongyuan. Shear wave velocity prediction based on one-dimensional convolutional neural network [J]. Lithologic Reservoirs, 2021, 33(4): 111-120.
[4] SUN Xiping, ZHANG Xin, LI Xuan, HAN Yongke, WANG Chunming, WEI Jun, HU Ying, XU Guangcheng, ZHANG Ming, DAI Xiaofeng. Reservoir prediction for weathering and leaching zone of bedrock buried hill based on seismic pre-stack depth migration [J]. Lithologic Reservoirs, 2021, 33(1): 220-228.
[5] YAO Jun, LE Xingfu, CHEN Juan, SU Wang, ZHANG Yongfeng. Prediction of high-quality source rock distribution based on pseudo-3D multi-attribute inversion [J]. Lithologic Reservoirs, 2021, 33(1): 248-257.
[6] ZHANG Yan, GAO Shichen, MENG Wanying, CHENG Yuhong, JIANG Sisi. Uncertainty analysis in AVO forward modeling for tight sandstone reservoirs [J]. Lithologic Reservoirs, 2020, 32(6): 120-128.
[7] WANG Jianjun, LI Jingliang, LI Lin, MA Guangchun, DU Yue, JIANG Yiming, LIU Xiao, YU Yinhua. Fracture prediction and modeling based on poststack 3D seismic data: a case study of shallow shale gas reservoir in Taiyang-Dazhai area [J]. Lithologic Reservoirs, 2020, 32(5): 122-132.
[8] DAI Xiaofeng, XIE Zhan'an, DU Benqiang, ZHANG Ming, TANG Tingke, LI Jun, MOU Chuan. Controlling factors and prediction methods of multiples of Dengying Formation in Gaoshiti-Moxi area,Sichuan Basin [J]. Lithologic Reservoirs, 2020, 32(4): 89-97.
[9] HE Jian, WU Gang, NIE Wenliang, LIU Songming, HUANG Wei. Fracture classification method based on proximal support vector machine [J]. Lithologic Reservoirs, 2020, 32(2): 115-121.
[10] SONG Xuanyi, LIU Yuetian, MA Jing, WANG Junqiang, KONG Xiangming, REN Xingnan. Productivity forecast based on support vector machine optimized by grey wolf optimizer [J]. Lithologic Reservoirs, 2020, 32(2): 134-140.
[11] ZHAO Wanjin, GAO Haiyan, YAN Guoliang, GUO Tongcui. TOC prediction technology based on optimal estimation and Bayesian statistics [J]. Lithologic Reservoirs, 2020, 32(1): 86-93.
[12] DING Yan, DU Qizhen, LIU Lihui, FU Liyun, LENG Xuemei, LIU Zixuan. Three-parameter AVO inversion method of pore modulus based on PP and PS wave simultaneous joint inversion [J]. Lithologic Reservoirs, 2020, 32(1): 111-119.
[13] LI Xinyu, ZHANG Jing, BAO Shihai, ZHANG Lianqun, ZHU Qiliang, YAN Haijun, CHEN Sheng. Analysis and countermeasures of seismic prediction traps for Xu-2 gas reservoir in central Sichuan Basin: a case study from Longnyusi block [J]. Lithologic Reservoirs, 2020, 32(1): 120-127.
[14] DIAO Rui. Monitoring and evaluation technology for high resolution processing of seismic data [J]. Lithologic Reservoirs, 2020, 32(1): 94-101.
[15] CHEN Guowen, DENG Zhiwen, JIANG Tailiang, ZHANG Junyong, YU Xuejiao, QI Chengye, XI Xiaoping. Application of PP-wave and SS-wave joint interpretation technology in gas cloud area [J]. Lithologic Reservoirs, 2019, 31(6): 79-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] KUANG Hongwei, GAO Zhenzhong, WANG Zhengyun, WANG Xiaoguang. A type of specific subtle reservoir : Analysis on the origin of diagenetic trapped reservoirs and its significance for exploration in Xia 9 wellblock of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 8 -14 .
[2] LI Guojun, ZHENG Rongcai, TANG Yulin, WANG Yang, TANG Kai. Sequence-based lithofacies and paleogeography of Lower Triassic Feixianguan Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2007, 19(4): 64 -70 .
[3] CAI Jia. Sedimentary facies of Neogene Sanya Formation in Changchang Sag, Qiongdongnan Basin[J]. Lithologic Reservoirs, 2017, 29(5): 46 -54 .
[4] ZHANG Hui, GUAN Da, XIANG Xuemei, CHEN Yong. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area,northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 133 -139 .
[5] FU Guang, LIU Bo, LV Yanfang. Comprehensive evaluation method for sealing ability of mudstone caprock to gas in each phase[J]. Lithologic Reservoirs, 2008, 20(1): 21 -26 .
[6] MA Zhongliang, ZENG Jianhui, ZHANG Shanwen, WANG Yongshi,WANG Hongyu, LIU Huimin. Migration and accumulation mechanism of sand lens reservoirs and its main controlling factors[J]. Lithologic Reservoirs, 2008, 20(1): 69 -74 .
[7] WANG Yingming. Analysis of the mess in sequence hierarchy applied in the industrialized application of the sequence stratigraphy[J]. Lithologic Reservoirs, 2007, 19(1): 9 -15 .
[8] WEI Pingsheng, PAN Shuxin, WAN G Jiangong,LEI Ming. Study of the relationship between lithostratigraphic reservoirs and lakeshore line:An introduction on lakeshore line controlling oil /gas reservoirs in sag basin[J]. Lithologic Reservoirs, 2007, 19(1): 27 -31 .
[9] YI Dinghong, SHI Lanting, JIA Yirong. Sequence stratigraphy and subtle reservoir of Aershan Formation in Baorao Trough of Jiergalangtu Sag[J]. Lithologic Reservoirs, 2007, 19(1): 68 -72 .
[10] YANG Zhanlong, PENG Licai, CHEN Qilin, GUO Jingyi,LI Zaiguang, HUANG Yunfeng. Petroleum accumulation condition analysis and lithologic reservoir exploration in Shengbei Depression of Turpan-harmy Basin[J]. Lithologic Reservoirs, 2007, 19(1): 62 -67 .
TRENDMD: