Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (2): 139-144.doi: 10.3969/j.issn.1673-8926.2017.02.017

Previous Articles     Next Articles

Quantitative identification of coal structure based on coal rock brittleness index by logging data

AI Lin1,2, ZHOU Mingshun3, ZHANG Jie4, LIANG Xiao1,2, QIAN Bowen1,2, LIU Diren1,2   

  1. 1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China;
    2. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China;
    3. Research Institute of Exploration and Development, PetroChina Huabei Oilfield Company, Renqiu 062552, Hebei, China;
    4. Research Institute of Geophysical Exploration, PetroChina Huabei Oilfield Company, Renqiu 062552, Hebei, China
  • Received:2016-08-29 Revised:2016-10-19 Online:2017-03-21 Published:2017-03-21

Abstract: An accurate identification of coal structure is one of key issues in coalbed methane(CBM)exploration and development. Different coal structure have different influences on the migration and enrichment of coalbed methane. According to the coal broken degree,the coal structure of No.3 coal bed was divided into primary structure, transition structure and cataclastic structure in F block of Qinshui Basin,and the characteristics of their logging response were analyzed. The results show that the logging curve is usually characterized with lower density and resistivity,and higher borehole diameter and acoustic time as the coal broken degree increases. Based on the qualitative identifying of coal structure by logging data,array acoustic logging data was used to calculate the coal rock brittleness index(BI)quantitatively. The application results show that it is feasible to identify coal structure quantitatively by the coal rock brittleness index,the identification result is consistent with the actual drilling coring data,and it can greatly reduce the error of the qualitative identification.

CLC Number: 

  • P631
[1] 范俊佳,琚宜文,柳少波,等. 不同煤储层条件下煤岩微孔结 构及其对煤层气开发的启示. 煤炭学报,2013,38(3):441-447 . FAN J J,JU Y W,LIU S B,et al. Micropore structure of coals under different reservoir conditions and its implication for coalbed methane development. Journal of China Coal Society, 2013,38(3):441-447 .
[2] 降文萍,张群,姜在炳,等. 构造煤孔隙结构对煤层气产气特 征的影响. 天然气地球科学,2016,27(1):173-179 . JIANG W P,ZHANG Q,JIANG Z B,et al. Effect on CBM drainage characteristics of pore structure of tectonic coal. Natural Gas Geoscience,2016,27(1):173-179 .
[3] LI J Q,LIU D M,YAO Y B,et al. Evaluation of the reservoir permeability of anthracite coals by geophysical logging data. International Journal of Coal Geology,2011,87(2):121-127 .
[4] 康园园,邵先杰,石磊,等. 煤层气开发目标区精选体系与方 法研究. 岩性油气藏,2011,23(1):62-66 . KANGYY,SHAO X J,SHI L,et al. Study on system and method of ranking coalbed methane development perspectives. Lithologic Reservoirs,2011,23(1):62-66 .
[5] 胡奇,王生维,张晨,等. 沁南地区煤体结构对煤层气开发的 影响. 煤炭科学技术,2014,42(8):65-68 . HU Q,WANG S W,ZHANG C,et al. Coal structure affected to coalbed methane development in Qinnan region. Coal Science and Technology,2014,42(8):65-68 .
[6] DASHTIAN H,JAFARI G R,SAHIMI M,et al. Scaling,multifractality, and long-range correlations in well log data of largescale porous media. Physica A:Statistical Mechanics and its Applications,2011,390:2096-2111.
[7] 姚军朋,司马立强,张玉贵. 构造煤地球物理测井定量判识研 究. 煤炭学报,2011,36(增刊1):94-98 . YAO J P,SIMA L Q,ZHANG Y G. Quantitative identification of deformed coals by geophysical logging. Journal of China Coal Society,2011,36(Suppl 1):94-98 .
[8] 陈跃,汤达祯,许浩,等. 基于测井信息的韩城地区煤体结构 的分布规律. 煤炭学报,2013,38(8):1435-1442 . CHEN Y,TANG D Z,XU H,et al. The distribution of coal structure in Hancheng based on well logging data. Journal of China Coal Society,2013,38(8):1435-1442.
[9] 张坤鹏,姜波,李明,等. 新景煤矿3 号煤层煤体结构测井曲 线判识及其分布规律. 煤田地质与勘探,2016,44(1):123-127 . ZHANG K P,JIANG B,LI M,et al. Identification and distribution of structure of seam No.3 in Xinjing Mine on the basis of well logs. Coal Geology & Exploration,2016,44(1):123-127 .
[10] 孟召平,刘珊珊,王保玉,等. 晋城矿区煤体结构及其测井响 应特征研究. 煤炭科学技术,2015,43(2):58-63 . MENG Z P,LIU S S,WANG B Y,et al. Study on feature of coal body structure and logging response in Jincheng mining area. Coal Science & Technology,2015,43(2):58-63 .
[11] CHEN Q,YAO H F,CHANG S L,et al. Coalbody structure classification method based on dual-lateral and RXO crossplot analysis. Journal of Coal Science and Engineering,2013,19 (4):522-529 .
[12] 李伟,要慧芳,刘鸿福,等. 基于显微CT 的不同煤体结构煤 三维孔隙精细表征. 煤炭学报,2014,39(6):1127-1132 . LI W,YAO H F,LIU H F,et al. Advanced characterization of three-dimensional pores in coals with different coal-body structure by micro-CT. Journal of China Coal Society,2014,39(6): 1127-1132 .
[13] 闫霞,李小军,赵辉,等. 煤层气井井间干扰研究及应用. 岩 性油气藏,2015,27(2):126-132 . YAN X,LI X J,ZHAO H,et al. Research on well interference of coalbed methane wells and its application. Lithologic Reservoirs, 2015,27(2):126-132 .
[14] 刘之的,王剑,杨秀春,等. 密度测井扩径影响校正方法在煤 层气储层中的适用性分析. 地球物理学进展,2014,29(5): 2219-2223 . LIU Z D,WANG J,YANG X C,et al. Analyzing on applicability of expanding influence correction method of density logging in the coalbed methane reservoir. Progress in Geophysics, 2014,29(5):2219-2223 .
[15] 许启鲁,黄文辉,杨延绘,等. 构造煤的测井曲线判识——以 柿庄北区块为例. 科学技术与工程,2016,16(3):11-16 . XU Q L,HUANG W H,YANG Y H,et al. Analysis of identifying deformed coal by logging curve in Shizhuang north block, Qinshui Basin,China. Science Technology and Engineering, 2016,16(3):11-16 .
[16] 赵毅,毛志强,孙伟,等. 煤层气储层非常规测井资料评价方 法研究. 测井技术,2011,35(5):441-446 . ZHAO Y,MAO Z Q,SUN W,et al. Evaluation method for unconventional log data of CBM reservoir. Well Logging Technology, 2011,35(5):441-446 .
[17] 刘鹏,乔文孝,车小花,等. 多极子阵列声波测井技术在煤层 气储层评价中的应用. 测井技术,2014,38(3):292-296 . LIU P,QIAO W X,CHE X H,et al. Application of multipole acoustic logging to the evaluation of coalbed methane reservoirs. Well Logging Technology,2014,38(3):292-296 .
[18] 王赟,许小凯,张玉贵. 六种不同变质程度煤的纵横波速度特 征及其与密度的关系. 地球物理学报,2012,55(11):3754-3761 . WANG Y,XU X K,ZHANG Y G. Characteristics of P-wave and S-wave velocities and their relationships with density of six metamorphic kinds of coals. Chinese Journal of Geophysics, 2012,55(11):3754-3761 .
[19] 冯昕鹏,李金付,聂建委,等. 横波速度拟合技术在苏里格气 田的应用. 岩性油气藏,2012,24(6):106-109 . FENG X P,LI J F,NIE J W,et al. Application of shear wave velocity fitting technology in Sulige Gas Field. Lithologic Res ervoirs,2012,24(6):106-109 .
[20] 王成龙,夏宏泉,杨双定. 基于岩石脆性系数的压裂缝高度与 宽度预测方法研究. 测井技术,2013,37(6):676-680 . WANG C L,XIA H Q,YANG S D. On fracture height and width prediction method based rock brittleness coefficient. Well Logging Technology,2013,37(6):676-680 .
[21] 李华阳,周灿灿,李长喜,等. 致密砂岩脆性指数测井评价方 法——以鄂尔多斯盆地陇东地区长7 段致密砂岩储集层为 例. 新疆石油地质,2014,35(5):593-597. LI H Y,ZHOU C C,LI C X,et al. Logging evaluation and application of brittleness index in tight sandstone reservoir—A case study of Chang-7 tight sandstone reservoir in Longdong area of Ordos Basin. Xinjiang Petroleum Geology,2014,35(5): 593-597.
[22] JARVIE D M,HILL R J,RUBLE T E,et al. Uncoventional shale-gas systems:the Mississippian Barnett shale on Northcentral Texas as one model for thermogenic shale-gas assessment. APPG Bulletin,2007,91(4):475-499 .
[23] RICKMAN R,MULLEN M,PETRE E,et al. A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett shale. SPE 115258,2008: 1-11 .
[24] GRIESER B,BRAY J. Identification of production potential in unconventional reservoirs. SPE 106623,2007:1-6 .
[1] ZHANG Tianze, WANG Hongjun, ZHANG Liangjie, ZHANG Wenqi, XIE Mingxian, LEI Ming, GUO Qiang, ZHANG Xuerui. Application of ray-path elastic impedance inversion in carbonate gas reservoir prediction of the right bank of Amu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 56-65.
[2] YAN Xueying, SANG Qin, JIANG Yuqiang, FANG Rui, ZHOU Yadong, LIU Xue, LI Shun, YUAN Yongliang. Main controlling factors for the high yield of tight oil in the Jurassic Da’anzhai Section in the western area of Gongshanmiao, Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(6): 98-109.
[3] SONG Zhihua, LI Lei, LEI Dewen, ZHANG Xin, LING Xun. Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(3): 40-49.
[4] XIONG Bo, ZHU Dongxue, FANG Chaohe, WANG Shejiao, DU Guanglin, XUE Yafei, MO Shaoyuan, XIN Fudong. Heat transfer prediction of medium and deep coaxial casing based on BP algorithm [J]. Lithologic Reservoirs, 2024, 36(2): 15-22.
[5] LIU Yaming, WANG Dandan, TIAN Zuoji, ZHANG Zhiwei, WANG Tongkui, WANG Chaofeng, YANG Xiaofa, ZHOU Yubing. Characteristics and prediction methods of igneous rocks in complex carbonate oilfields in Santos Basin,Brazil [J]. Lithologic Reservoirs, 2023, 35(6): 127-137.
[6] SU Qin, ZENG Huahui, XU Xingrong, WANG Deying, MENG Huijie. Key techniques of high-resolution processing of desert seismic data and its application in Agedem area,Niger [J]. Lithologic Reservoirs, 2023, 35(6): 18-28.
[7] FAN Rui, LIU Hui, YANG Peiguang, SUN Xing, MA Hui, HAO Fei, ZHANG Shanshan. Identification of carbonate dissolution valleys filled with mudstones of Cretaceous in block A,Oman Basin [J]. Lithologic Reservoirs, 2023, 35(6): 72-81.
[8] WANG Lide, WANG Xiaowei, ZHOU Hui, WU Jie, ZHANG Zhiqiang, WANG Jianle, WANG Deying, FENG Gang. A layered velocity modeling method for elastic wave full waveform inversion based on improved conjugate gradient method [J]. Lithologic Reservoirs, 2023, 35(4): 61-69.
[9] LI Shengjun, GAO Jianhu, ZHANG Fanchang, HE Dongyang, GUI Jinyong. A strong seismic energy reduction method under compressed sensing [J]. Lithologic Reservoirs, 2023, 35(4): 70-78.
[10] XU Xin, YANG Wuyang, ZHANG Kai, WEI Xinjian, ZHANG Xiangyang, LI Haishan. Optimization of 3D first-arrival traveltime tomography inversion [J]. Lithologic Reservoirs, 2023, 35(4): 79-89.
[11] HUANG Junli, ZHANG Wei, LIU Lihui, CAI Guofu, ZENG Youliang, MENG Qingyou, LIU Hao. Ternary seismic configuration interpretation technology of Paleogene Wenchang Formation in Panyu 4 depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(2): 103-112.
[12] ZHOU Donghong, TAN Huihuang, ZHANG Shengqiang. Seismic description technologies of Neogene composite channel sand bodies in Kenli 6-1 oilfield,Bohai Sea [J]. Lithologic Reservoirs, 2022, 34(4): 13-21.
[13] HE Yu, ZHOU Xing, LI Shaoxuan, DING Hongbo. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2022, 34(3): 60-69.
[14] CHEN Yuan, LIAO Faming, LYU Bo, JIA Wei, SONG Qiuqiang, WU Yan, KANG Ju, XIAN Rangzhi. Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(3): 104-116.
[15] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: