Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (6): 51-59.doi: 10.3969/j.issn.1673-8926.2017.06.007

Previous Articles     Next Articles

Tight sandstone reservoir characteristics and diagenesis evolution of Taiyuan Formation in Shenmu-Fugu area,Ordos Basin

LIU Zaizhen, LIU Yuming, LI Yangbing, LIU Xueqing, WANG Yuesheng, WANG Haiyan   

  1. Ener Tech-Drilling & Production Company, CNOOC, Tianjin 300452, China
  • Received:2017-05-02 Revised:2017-08-18 Online:2017-11-21 Published:2017-11-21

Abstract: In order to elucidate sandstone reservoir characteristics of Taiyuan Formation and its genesis of the densification in Shenmu-Fugu area,Ordos Basin,based on the data of cast thin section,scanning electron microscope,cathodoluminescence and high-pressure mercury,cementation and metasomatism between the cement and its relation with clastic particles,the diagenetic sequence and porosity evolution process were analyzed. The results show that the reservoir is dominated by medium-coarse lithic sandstone and feldspathic lithic sandstone. The reservoir porosity is 0.20%-12.00%, with average of 6.95%, and the permeability is 0.10-5.00 mD, with average of 0.91 mD,which belongs to typical low-porosity and extra-low-permeability tight sandstone reservoir.The pore structure is mainly small pore with fine throat and small pore with micro throat. The porosity evolution shows that the porosity decreased 15.5% by compaction,reduced about 10.4% by cementation,and increased about 4.41% by dissolution. The calculated reservoir porosity of Taiyuan Formation is 7.17%,which is similar to the analyzed porosity of 6.95% in the laboratory. Early compaction and late carbonate cementation are the main causes for the reservoir densification,while dissolution is beneficial to develop secondary pores for improving reservoirs properties.

Key words: CO2 flooding, grey correlation analysis, oil recovery, suitability

CLC Number: 

  • TE122.2+3
[1] 姚泾利, 唐俊, 庞国印, 等.鄂尔多斯盆地白豹-华池地区长8段孔隙度演化定量模拟.天然气地球科学, 2013, 24(1):38-46. YAO J L, TANG J, PANG G Y, et al. Quantitative simulation on porosity-evolution in member 8 of Yanchang Formation of Baibao-Huachi area, Ordos Basin. Natural Gas Geoscience, 2013, 24(1):38-46.
[2] 廖朋, 唐俊, 王凯, 等.砂岩成岩过程中的孔隙演化定量模拟——以鄂尔多斯盆地安塞地区长8油层组储层为例. 岩性油气藏, 2014, 26(5):15-22. LIAO P, TANG J, WANG K, et al. Quantitative simulation on pore evolution in diagenetic process of sandstone:a case study from Chang 8 oil reservoir set in Ansai area, Ordos Basin. Lithologic Reservoirs, 2014, 26(5):15-22.
[3] ATHY L F. Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 1930, 14(1):1-24.
[4] 陈发景, 田世澄.压实与油气运移.武汉:中国地质大学出版社, 1989:113-134. CHEN F J, TIAN S C. Compaction and oil or gas migration. Wuhan:China University of Geoscience Press, 1989:113-134.
[5] 刘震, 邵新军, 金博, 等.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响.现代地质, 2007, 21(1):125-132. LIU Z, SHAO X J, JIN B, et al. Co-effect of depth and burial time on the evolution of porosity for clastic rocks during the stage of compaction. Geoscience, 2007, 21(1):125-132.
[6] 潘高峰, 刘震, 赵舒, 等.砂岩孔隙度演化定量模拟方法——以鄂尔多斯盆地镇泾地区延长组为例.石油学报, 2011, 32(2):249-256. PAN G F, LIU Z, ZHAO S, et al. Quantitative simulation of sandstone porosity evolution:a case from Yanchang Formation of the Zhenjing area, Ordos Basin. Acta Petrolei Sinica, 2011, 32(2):249-256.
[7] 孟元林, 王粤川, 牛嘉玉, 等.储层孔隙度预测与有效天然气储层确定——以渤海湾盆地鸳鸯沟地区为例.天然气工业, 2007, 27(6):42-44. MENG Y L, WANG Y C, NIU J Y, et al. Prediction of reservoir porosity and determination of effective gas reservoirs:taking Yuanyanggou area of Bohai Bay Basin as an example. Natural Gas Industry, 2007, 27(6):42-44.
[8] 王瑞飞, 沈平平, 赵良金.深层储集层成岩作用及孔隙度演化定量模型——以东濮凹陷文东油田沙三段储集层为例.石油勘探与开发, 2011, 38(5):552-559. WANG R F, SHEN P P, ZHAO L J. Diagenesis of deep sandstone reservoir and a quantitative model of porosity evolution:taking the third member of Shahejie Formation in the Wendong Oilfield, Dongpu Sag as an example. Petroleum Exploration and Development, 2011, 38(5):552-559.
[9] 潘新志, 叶建平, 孙新阳, 等.鄂尔多斯盆地神府地区中低阶煤层气勘探潜力分析.煤炭科学技术, 2015, 43(9):65-70. PAN X Z, YE J P, SUN X Y, et al. Analysis on exploration potential of mid-low rank coalbed methane in Shenfu area of Ordos Basin. Coal Science and Technology, 2015, 43(9):65-70.
[10] 樊爱萍, 赵娟, 杨仁超, 等.苏里格气田东二区山1段、盒8段储层孔隙结构特征.天然气地球科学, 2011, 22(3):482-487. FAN A P, ZHAO J, YANG R C, et al. Pore structure of reservoir rocks in Shan 1 and He 8 members, the EastⅡblock of Sulige gas field. Natural Gas Geoscience, 2011, 22(3):482-487.
[11] 郝乐伟, 王琪, 唐俊.储层岩石微观孔隙结构研究方法与理论综述.岩性油气藏, 2013, 25(5):123-128. HAO L W, WANG Q, TANG J. Research progress of reservoir microscopic pore structure. Lithologic Reservoirs, 2013, 25(5):123-128.
[12] 李永胜, 刘学刚, 章志锋, 等.鄂尔多斯盆地姬塬油田长8储层微观孔隙结构特征.石油化工应用, 2013, 32(4):63-69. LI Y S, LIU X G, ZHANG Z F, et al. Study microscopic pore structure characteristics of Chang 8 reservoir of Jiyuan oilfield by capillary curves. Petrochemical Industry Application, 2013, 32(4):63-69.
[13] 张宪国, 张涛, 林承焰.基于孔隙分形特征的低渗透储层孔隙结构评价.岩性油气藏, 2013, 25(6):40-45. ZHANG X G, ZHANG T, LIN C Y. Pore structure evolution of low permeability reservoir based on pore fractal features. Lithologic Reservoirs, 2013, 25(6):40-45.
[14] 曹剑, 张义杰, 胡文瑄, 等.油气储层自生高岭石发育特点及其对物性的影响.矿物学报, 2005,25(4):367-373. CAO J, ZHANG Y J, HU W X, et al. Developing characteristics of kaolinite in central Junggar Basin and their effect on the reservoir quality. Acta Mineralogica Sinica, 2005, 25(4):367-373.
[15] SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organicinorganic interactions and sandstone diagenesis. AAPG Bulletin, 1989, 73(1):1-23.
[16] HUNT J M. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 1990, 74(1):1-12.
[17] 国家经济贸易委员会. 碎屑岩成岩阶段划分标准:SY/T 5477-2003.北京:石油工业出版社, 2003:1-4. State Economic and Trade Commission. The division of diagenetic stages in clastic rocks:SY/T5477-2003. Beijing:Petroleum Industry Press, 2003:1-4.
[18] 张莹莹, 黄思静.华庆地区长6油层组方解石胶结物特征.岩性油气藏, 2012, 24(2):48-52. ZHANG Y Y, HUANG S J. Characteristics of calcite cements of Chang 6 oil reservoir set in Huaqing area. Lithologic Reservoirs, 2012, 24(2):48-52.
[19] 朱国华, 章卫平.煤系地层砂岩成岩作用和孔隙演化研究——以长广地区龙潭组为例.石油勘探与开发, 1993, 20(1):42-50. ZHU G H, ZHANG W P. A study of digenesis and the evolution of porosity of the sandstones coaliferous Formations:taking Longtan group in Changguang region as an example. Petroleum Exploration and Development, 1993, 20(1):42-50.
[20] 郑浚茂, 应凤祥.煤系地层(酸性水介质)的砂岩储层特征及成岩模式.石油学报, 1997, 18(4):19-24. ZHENG J M, YING F X. Reservoir characteristics and diagenetic model of sandstone intercalated in coal-bearing strata.Acta Petrolei Sinica, 1997, 18(4):19-24.
[21] 远光辉, 操应长, 杨田, 等.论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力.地学前缘, 2013, 20(5):207-219. YUAN G H, CAO Y C, YANG T, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir. Earth Science Frontiers, 2013, 20(5):207-219.
[22] BEARD D C, WEYL P K. Influence of texture on porosity and permeability of unsolidated sand. AAPG Bulletin, 1973, 57(2):349-369.
[23] SCHERER M. Parameters influencing porosity in sandstones a model for sandstone porosity prediction. AAPG Bulletin, 1987, 71(5):485-491.
[24] 张兴良, 田景春, 王峰, 等.致密砂岩储层成岩作用特征与孔隙演化定量评价——以鄂尔多斯盆地高桥地区二叠系下石盒子组盒8段为例. 石油与天然气地质, 2014, 35(2):212-217. ZHANG X L, TIAN J C, WANG F, et al. Diagenetic characteristics and quantitative porosity estimation of tight sandstone reservoirs:a case from the 8 th member of Permian Xiashihezi Formation in the Gaoqiao region, Ordos Basin. Oil & Gas Geology, 2014, 35(2):212-217.
[25] 思玉琥, 郝世彦, 张林森, 等.延安地区上三叠统长6期储层成岩作用及孔隙演化.特种油气藏, 2011, 18(6):36-39. SI Y H, HAO S Y, ZHANG L S, et al. Diageneses of the Upper Triassic Chang 6 Formation in Yan' an area and pore evolution. Special Oil & Gas Reservoirs, 2011, 18(6):36-39.
[1] SU Hao, GUO Yandong, CAO Liying, YU Chen, CUI Shuyue, LU Ting, ZHANG Yun, LI Junchao. Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield [J]. Lithologic Reservoirs, 2024, 36(5): 178-188.
[2] BAI Jiajia, SI Shuanghu, TAO Lei, WANG Guoqing, WANG Longlong, SHI Wenyang, ZHANG Na, ZHU Qingjie. Mechanism of DES+CTAB composite oil displacement agent system to improve oil recovery of low-permeability tight sandstone reservoirs [J]. Lithologic Reservoirs, 2024, 36(1): 169-177.
[3] YANG Zhaochen, LU Yingbo, YANG Guo, HUANG Chun, YI Dalin, JIA Song, WU Yongbin, WANG Guiqing. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil [J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
[4] GUO Yongwei, YAN Fangping, WANG Jing, CHU Huili, YANG Jianlei, CHEN Yingchao, ZHANG Xiaoyang. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs [J]. Lithologic Reservoirs, 2021, 33(3): 153-161.
[5] SUN Huizhu, ZHU Yushuang, WEI Yong, GAO Yuan. Influence mechanism of acidification on oil recovery during CO2 flooding [J]. Lithologic Reservoirs, 2020, 32(4): 136-142.
[6] CUI Yongzheng, JIANG Ruizhong, GAO Yihua, QIAO Xin, WANG Qiong. Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding [J]. Lithologic Reservoirs, 2020, 32(4): 172-180.
[7] HUANG Guangqing. Influence of ion composition and salinity on recovery of water flooding with low salinity [J]. Lithologic Reservoirs, 2019, 31(5): 129-133.
[8] TANG Meirong, ZHANG Tongwu, BAI Xiaohu, WANG Xuanyi, LI Chuan. Influence of pore throat structure on reservoir damage with CO2 flooding [J]. Lithologic Reservoirs, 2019, 31(3): 113-119.
[9] HAN Peihui, YAN Kun, CAO Ruibo, GAO Shuling, TONG Hui. Oil displacement methods for enhanced oil recovery after polymer flooding [J]. Lithologic Reservoirs, 2019, 31(2): 143-150.
[10] SHANG Qinghua, WANG Yuxia, HUANG Chunxia, CHEN Longlong. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir [J]. Lithologic Reservoirs, 2018, 30(3): 153-158.
[11] MA Li, OUYANG Chuanxiang, TAN Zhengyang, WANG Changquan, SONG Yan, LIN Fei. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs [J]. Lithologic Reservoirs, 2018, 30(2): 139-145.
[12] WANG Xiaotong, XIANG Longbin, ZHANG Yixin. Microorganism preparation and application evaluation on microbial enhanced high-pour point oil recovery in Liaohe Oilfield [J]. Lithologic Reservoirs, 2017, 29(5): 162-168.
[13] YANG Hong, WANG Hong, NAN Yufeng, QU Yaning, LIANG Kaiqiang, JIANG Shaojing. Suitability evaluation of enhanced oil recovery by CO2 flooding [J]. Lithologic Reservoirs, 2017, 29(3): 140-146.
[14] LIU Chen, WANG Kai, WANG Yefei, ZHOU Wensheng. Polymer/surfactant binary flooding in A oilfield with high temperature and high salinity [J]. Lithologic Reservoirs, 2017, 29(3): 152-158.
[15] Li Youquan,Meng Fankun,Yan Yan,Han Fengrui,Yu Weijie,Zhou Shiyu. Pressure transient analysis on CO2 flooding in low permeability reservoirs considering fluid heterogeneity [J]. Lithologic Reservoirs, 2016, 28(4): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] KUANG Hongwei, GAO Zhenzhong, WANG Zhengyun, WANG Xiaoguang. A type of specific subtle reservoir : Analysis on the origin of diagenetic trapped reservoirs and its significance for exploration in Xia 9 wellblock of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 8 -14 .
[2] LI Guojun, ZHENG Rongcai, TANG Yulin, WANG Yang, TANG Kai. Sequence-based lithofacies and paleogeography of Lower Triassic Feixianguan Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2007, 19(4): 64 -70 .
[3] CAI Jia. Sedimentary facies of Neogene Sanya Formation in Changchang Sag, Qiongdongnan Basin[J]. Lithologic Reservoirs, 2017, 29(5): 46 -54 .
[4] ZHANG Hui, GUAN Da, XIANG Xuemei, CHEN Yong. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area,northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 133 -139 .
[5] FU Guang, LIU Bo, LV Yanfang. Comprehensive evaluation method for sealing ability of mudstone caprock to gas in each phase[J]. Lithologic Reservoirs, 2008, 20(1): 21 -26 .
[6] MA Zhongliang, ZENG Jianhui, ZHANG Shanwen, WANG Yongshi,WANG Hongyu, LIU Huimin. Migration and accumulation mechanism of sand lens reservoirs and its main controlling factors[J]. Lithologic Reservoirs, 2008, 20(1): 69 -74 .
[7] WANG Yingming. Analysis of the mess in sequence hierarchy applied in the industrialized application of the sequence stratigraphy[J]. Lithologic Reservoirs, 2007, 19(1): 9 -15 .
[8] WEI Pingsheng, PAN Shuxin, WAN G Jiangong,LEI Ming. Study of the relationship between lithostratigraphic reservoirs and lakeshore line:An introduction on lakeshore line controlling oil /gas reservoirs in sag basin[J]. Lithologic Reservoirs, 2007, 19(1): 27 -31 .
[9] YI Dinghong, SHI Lanting, JIA Yirong. Sequence stratigraphy and subtle reservoir of Aershan Formation in Baorao Trough of Jiergalangtu Sag[J]. Lithologic Reservoirs, 2007, 19(1): 68 -72 .
[10] YANG Zhanlong, PENG Licai, CHEN Qilin, GUO Jingyi,LI Zaiguang, HUANG Yunfeng. Petroleum accumulation condition analysis and lithologic reservoir exploration in Shengbei Depression of Turpan-harmy Basin[J]. Lithologic Reservoirs, 2007, 19(1): 62 -67 .
TRENDMD: