Lithologic Reservoirs ›› 2019, Vol. 31 ›› Issue (4): 92-100.doi: 10.12108/yxyqc.20190410

• EXPLORATION TECHNOLOGY • Previous Articles     Next Articles

High precision prestack seismic velocity prediction based on well logging constraint

DU Binshan1, YONG Xueshan1, WANG Jiangong1, NI Xianglong1, QIN Tao2, CHAI Xiaoying2   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China;
    2. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2018-10-27 Revised:2019-01-10 Online:2019-07-21 Published:2019-06-21

Abstract: The prediction accuracy of velocity from seismic migration imaging processing is not high enough to meet the requirements of fine time-depth conversion and 3-D seismic velocity modeling. According to seismic wave and traveltime features,the velocity extracted from prestack seismic gathers was mutually converted, cross-validated and layered constrained with acoustic velocity of well logging to establish velocity model. On the consideration of errors between the seismic velocity and logging acoustic velocity,layered and subscale 3-D constraint correction was carried out to realize the fusion of low-frequency seismic velocity information and relatively high-frequency seismic velocity information of thin layer. The results of theoretical models and practical seismic data show that the best time window step size should be 15-20 ms for the seismic characteristic velocity and the continuous predicted velocity obtained under the quality control of logging velocity. This technology can be used in seismic imaging processing,seismic velocity modeling,variable-velocity structural mapping and so on.It has been proved that continuous velocity improved the accuracy of seismic data processing and interpretation.

Key words: prestack seismic gathers, continuous velocity, well seismic combination, high precision, velocity prediction

CLC Number: 

  • P631.4
[1] 雍学善,余建平,石兰亭. 一种三维高精度储层参数反演方法. 石油地球物理勘探,1997,32(6):852-856. YONG X S,YU J P,SHI L T. A three-dimensional high-precision reservoir parameter inversion method. Oil Geophysical Prospecting,1997,32(6):852-856.
[2] 雍学善,刘全新,卫平生,等.砂泥岩薄互层储层预测的难点与对策.天然气工业,2005,25(增刊B):96-100. YONG X S,LIU Q X,WEI P S,et al. Difficulties and countermeasures to predict reservoirs with thin sand-shale alternating layers. Nature Gas Industry,2005,25(Suppl B):96-100.
[3] 杜斌山,贺振华,曹正林,等.地震地质多信息融合的井震标定方法研究.天然气地球科学,2009,20(2):254-258. DU B S,HE Z H,CAO Z L,et al. Research on seismic calibration method for multi-information fusion of seismic geology. Natural Gas Geoscience,2009,20(2):254-258.
[4] 于彩霞,赵惊涛,王真理.VTI介质快速偏移速度分析.石油地球物理勘探,2013,48(5):688-693. YU C X,ZHAO J T,WANG Z L. VTI media fast offset speed analysis. Oil Geophysical Prospecting,2013,48(5):688-693.
[5] 常丁月,张才,胡天跃.多聚焦叠加方法述评.石油地球物理勘探,2017,52(5):1103-1111. CHANG D Y,ZHANG C,HU T Y. Review of multi-focus superposition method. Oil Geophysical Prospecting,2017,52(5):1103-1111.
[6] 赵玲芝,谷跃民,张建中.多信息融合的近地表速度建模技术及应用.石油地球物理勘探,2017,52(1):34-41. ZHAO L Z,GU Y M,ZHANG J Z. Near-surface velocity modeling technology and application of multi-information fusion. Oil Geophysical Prospecting,2017,52(1):34-41.
[7] 秦宁,王延光,杨晓东,等.基于角道集剩余曲率分析的层析速度建模.石油地球物理勘探,2015,50(1):61-66. QIN N,WANG Y G,YANG X D,et al. Chromatographic velocity modeling based on residual curvature analysis of corner sets. Oil Geophysical Prospecting,2015,50(1):61-66.
[8] 马彦彦,李国发,张星宇,等.叠前深度偏移速度建模方法分析.石油地球物理勘探,2014,49(4):687-693. MA Y Y,LI G F,ZHANG X Y,et al. Analysis of modeling method for prestack depth migration velocity. Oil Geophysical Prospecting,2014,49(4):687-693.
[9] 程玉坤,刘建红,周振晓,等.速度建模特色技术的实际应用. 石油地球物理勘探,2017,52(增刊2):110-115. CHENG Y K,LIU J H,ZHOU Z X,et al. Practical application of speed modeling features. Oil Geophysical Prospecting,2017, 52(Suppl 2):110-115.
[10] 撒利明,杨午阳,杜启振,等.地震偏移成像技术回顾与展望. 石油地球物理勘探,2015,50(5):1016-1036. SA L M,YANG W Y,DU Q Z,et al. Review and prospect of seismic migration imaging technology. Oil Geophysical Prospecting,2015,50(5):1016-1036.
[11] 杜斌山,贺振华,王绪本,等.基于地震偶极子波多重积分的初始阻抗模型建立方法.物探化探计算技术,2017,39(1):71-80. DU B S,HE Z H,WANG X B,et al. Initial impedance model establishment based on the seismic dipole wavelet and multiple integral methods. Computing Techniques for Geophysical and Geochemical Exploration,2017,39(1):71-80.
[12] 杜斌山,贺振华,雍学善,等.波形与走时联合初始阻抗模型建立方法研究.天津:中国石油学会物探技术研讨会,2017:1048-1051. DU B S,HE Z H,YONG X S,et al. Research on the establishment of initial impedance model for waveform and travel time. Tianjin:China Petroleum Institute Geophysical Technology Seminar,2017:1048-1051.
[13] 管文胜,段文胜,查明,等.利用基于模型的层析速度反演进行低幅度构造成像.石油地球物理勘探,2017,52(1):87-93. GUAN W S,DUAN W S,ZHA M,et al. Low-amplitude structural imaging using model-based tomographic velocity inversion. Oil Geophysical Prospecting,2017,52(1):87-93.
[14] 乐友喜,刘陈希,问雪,等.变速成图速度场随机建模的不确定性分析.石油地球物理勘探,2016,51(4):714-720. LE Y X,LIU C X,WEN X,et al. Uncertainty analysis of stochastic modeling of variable velocity map. Oil Geophysical Prospecting,2016,51(4):714-720.
[15] 潘宏勋,方伍宝,李满树.南方山前带B区地震速度建模及偏移成像.石油地球物理勘探,2013,48(4):526-530. PAN H X,FANG W B,LI M S. Seismic velocity modeling and migration imaging of the B-zone in the southern piedmont area. Oil Geophysical Prospecting,2013,48(4):526-530.
[16] 王西文,刘全新,苏明军,等.多井约束下的速度建模方法和应用.石油地球物理勘探,2003,38(3):263-267. WANG X W,LIU Q X,SU M J,et al. Method and application of velocity modeling under multi-well constraints. Oil Geophysical Prospecting,2003,38(3):263-267.
[17] 王威. 东北地区须家河组天然气高效成藏模式探讨.岩性油气藏,2018,30(3):30-37. WANG W. High efficient reservoir accumulation models of natural gas of Xujiahe Formation in northeastern Sichuan Basin. Lithologic Reservoirs,2018,30(3):30-37.
[18] 石战战,唐湘蓉,庞溯,等.一种基于SC-DTW的叠前道集剩余时差校正方法.岩性油气藏,2017,29(5):113-119. SHI Z Z,TANG X R,PANG S,et al. Prestack gather residual moveout correction based on shape context and dynamic time warping. Lithologic Reservoirs,2017,29(5):113-119.
[19] 陶帅,郝永卯,周杰,等.透镜体低渗透岩性油藏合理井网井距研究.岩性油气藏,2018,30(5):116-123. TAO S,HAO Y M,ZHOU J,et al. Reasonable pattern well spacing deployment of lens lithologic reservoirs with low permeability. Lithologic Reservoirs,2018,30(5):116-123.
[20] 刘文卿,王孝,胡书华,等.测井与全方位道集联合各向异性参数建模及成像.岩性油气藏,2018,30(6):86-91. LIU W Q,WANG X,HU S H,et al. Well constrained anisotropic velocity model building based on full-azimuth angle gathers and imaging. Lithologic Reservoirs,2018,30(6):86-91.
[21] 陈国文,沈亚,袁云超,等.柴西南地区岩性油藏地震评价关键技术方法.岩性油气藏,2018,30(5):74-81. CHEN G W,SHEN Y,YUAN Y C,et al. Key techniques for seismic evaluation of lithologic reservoirs in southwestern Qaidam Basin. Lithologic Reservoirs,2018,30(5):74-81.
[22] 周鹏,刘志斌,张益明,等.动校剩余时差处理方法及应用.地球物理学进展,2015,30(5):2349-2353. ZHOU P,LIU Z B,ZHANG Y M,et al. The processing method and application of the residual moveout NMO. Progress in Geophysics,2015,30(5):2349-2353.
[23] 张建坤,吴鑫,方度,等.马头营凸起馆二段窄薄河道砂体地震识别.岩性油气藏,2018,30(6):92-100. ZHANG J K,WU X,FANG D,et al. Seismic identification of narrow and thin channel sandbodies in the member 2 of Guantao Formation,Matouying Uplift. Lithologic Reservoirs,2018,30(6):92-100.
[24] 陆基孟.地震勘探原理(上册).东营:中国石油大学出版社, 1996:211-222. LU J M. Principles of seismic exploration. Dongying:China University of Petroleum Press,1996:211-222.
[1] ZHANG Tianze, WANG Hongjun, ZHANG Liangjie, ZHANG Wenqi, XIE Mingxian, LEI Ming, GUO Qiang, ZHANG Xuerui. Application of ray-path elastic impedance inversion in carbonate gas reservoir prediction of the right bank of Amu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 56-65.
[2] SONG Zhihua, LI Lei, LEI Dewen, ZHANG Xin, LING Xun. Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(3): 40-49.
[3] SU Qin, ZENG Huahui, XU Xingrong, WANG Deying, MENG Huijie. Key techniques of high-resolution processing of desert seismic data and its application in Agedem area,Niger [J]. Lithologic Reservoirs, 2023, 35(6): 18-28.
[4] FAN Rui, LIU Hui, YANG Peiguang, SUN Xing, MA Hui, HAO Fei, ZHANG Shanshan. Identification of carbonate dissolution valleys filled with mudstones of Cretaceous in block A,Oman Basin [J]. Lithologic Reservoirs, 2023, 35(6): 72-81.
[5] LIU Yaming, WANG Dandan, TIAN Zuoji, ZHANG Zhiwei, WANG Tongkui, WANG Chaofeng, YANG Xiaofa, ZHOU Yubing. Characteristics and prediction methods of igneous rocks in complex carbonate oilfields in Santos Basin,Brazil [J]. Lithologic Reservoirs, 2023, 35(6): 127-137.
[6] WANG Lide, WANG Xiaowei, ZHOU Hui, WU Jie, ZHANG Zhiqiang, WANG Jianle, WANG Deying, FENG Gang. A layered velocity modeling method for elastic wave full waveform inversion based on improved conjugate gradient method [J]. Lithologic Reservoirs, 2023, 35(4): 61-69.
[7] LI Shengjun, GAO Jianhu, ZHANG Fanchang, HE Dongyang, GUI Jinyong. A strong seismic energy reduction method under compressed sensing [J]. Lithologic Reservoirs, 2023, 35(4): 70-78.
[8] XU Xin, YANG Wuyang, ZHANG Kai, WEI Xinjian, ZHANG Xiangyang, LI Haishan. Optimization of 3D first-arrival traveltime tomography inversion [J]. Lithologic Reservoirs, 2023, 35(4): 79-89.
[9] ZHOU Donghong, TAN Huihuang, ZHANG Shengqiang. Seismic description technologies of Neogene composite channel sand bodies in Kenli 6-1 oilfield,Bohai Sea [J]. Lithologic Reservoirs, 2022, 34(4): 13-21.
[10] CHEN Yuan, LIAO Faming, LYU Bo, JIA Wei, SONG Qiuqiang, WU Yan, KANG Ju, XIAN Rangzhi. Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(3): 104-116.
[11] ZHANG Meng. Least-squares reverse time migration in visco-acoustic medium based on GPU parallel acceleration and its application [J]. Lithologic Reservoirs, 2022, 34(1): 148-153.
[12] CHEN Yongbo, ZHANG Huquan, ZHANG Han, ZENG Huahui, WANG Bin, WANG Hongqiu, XU Duonian, MA Yongping, ZONG Zhaoyun. Dolomitic reservoir prediction technology based on OVT domain migration data and its application: A case study of Feng 3 member in Wuxia area,Mahu Sag [J]. Lithologic Reservoirs, 2021, 33(6): 145-155.
[13] XU Xingrong, SU Qin, SUN Jiaqing, ZENG Huahui, XIAO Mingtu, LIU Mengli. High precision combined residual static correction method and its application [J]. Lithologic Reservoirs, 2021, 33(5): 132-139.
[14] ZHAO Yan, MAO Ningbo, CHEN Xu. Self-adaptive gain-limit inverse Q filtering method based on SNR in time-frequency domain [J]. Lithologic Reservoirs, 2021, 33(4): 85-92.
[15] MENG Huijie, SU Qin, ZENG Huahui, XU Xingrong, LIU Huan, ZHANG Xiaomei. Blind source separation of seismic signals based on ICA algorithm and its application [J]. Lithologic Reservoirs, 2021, 33(4): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: