Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (2): 65-75.doi: 10.12108/yxyqc.20240207

• PETROLEUM EXPLORATION • Previous Articles    

A random forests prediction method for gas saturation based on feature variable extension

GUI Jinyong, LI Shengjun, GAO Jianhu, LIU Bingyang, GUO Xin   

  1. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China
  • Received:2023-10-09 Revised:2023-11-15 Published:2024-03-06

Abstract: A data-driven approach was proposed to predict gas saturation based on random forests machine learning algorithm. This method was applied to predict and analyze gas saturation in a complex natural gas reservoir in western China from single well data and two-dimensional seismic data respectively. The results show that:(1)The method extracts the pre-stack seismic inversion results of three elastic parameters from the uphole trace(compressional wave velocity,shear wave velocity,and density)from well log data as basic feature variables. It employs the boundary synthetic minority oversampling technique to balance the basic feature variables and corresponding gas saturation samples,generates a series of extended variables by combining the extended elastic impedance with mathematical transformations,and then uses random forests to rank the importance of the feature variables for gas saturation prediction,finally selects feature variables with higher importance for gas saturation random forests training.(2)This method significantly reduces the manual workload for feature variables extraction andselection,effectively reduces information redundancy and training bias caused by imbalanced gas saturation samples,and effectively enhances the capability of the random forests algorithm in predicting gas saturation. (3)In practical applications,the predicted gas saturation using this method shows a high correlation coefficient of 0.985 5 with the gas saturation by log interpretation. In the case of two-dimensional data,it achieves higher accuracy in gas saturation prediction compared to using 11 conventional unbalanced elastic parameters as inputs for random forests.

Key words: gas saturation, random forests, compressional wave velocity, shear wave velocity, density, feature variable, imbalance data, machine learning, gas layer prediction, seismic prediction

CLC Number: 

  • P618.13
[1] 胡胜福,周灿灿,李霞,等.测井饱和度解释模型的演化历程分析与思考[J]. 地球物理学进展,2017,32(5):1992-1998. HU Shengfu,ZHOU Cancan,LI Xia,et al. Analysis and prospect of logging saturation model evolutionary history[J]. Progress in Geophysics,2017,32(5):1992-1998.
[2] 何绪全,黄东,赵艾琳,等. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏,2021,33(3):129-137. HE Xuquan,HUANG Dong,ZHAO Ailin,et al. Well-logging evaluation index system of shale oil and gas reservoir of Da'an-zhai member in central Sichuan Basin[J]. Lithologic Reservoirs, 2021,33(3):129-137.
[3] 刘仕友,段治川,周凡,等. 基于布谷鸟算法的储层物性参数同步反演[J]. 石油地球物理勘探,2022,57(3):638-646. LIU Shiyou,DUAN Zhichuan,ZHOU Fan,et al. Simultaneous inversion of petrophysical parameters of reservoir based on cuckoo search algorithm[J]. Oil Geophysical Prospecting,2022, 57(3):638-646.
[4] BACHRACH R. Joint estimation of porosity and saturation using stochastic rock-physics modeling[J]. Geophysics,2006,71(5):O53-O63.
[5] 胡华锋. 基于叠前道集的储层参数反演方法研究[D]. 青岛:中国石油大学(华东),2011. HU Huafeng. The study of petrophysical-properties inversion base on pre-stack seismic data[D]. Qingdao:China University of Petroleum(East China),2011.
[6] DE FIGUEIREDO L P,GRANA D,SANTOS M,et al. Bayesian seismic inversion based on rock-physics prior modeling for the joint estimation of acoustic impedance,porosity and lithofacies[J]. Journal of Computational Physics,2017,336:128-142.
[7] 刘兴业,陈小宏,李景叶,等. 基于核贝叶斯判别法的储层物性参数预测[J]. 石油学报,2016,37(7):878-886. LIU Xingye,CHEN Xiaohong,LI Jingye,et al. Reservoir physical property prediction based on kernel-Bayes discriminant method[J]. Acta Petrolei Sinica,2016,37(7):878-886.
[8] 李红兵,张佳佳,潘豪杰,等. 基于弹性阻抗的孔隙结构与物性参数非线性同步反演[J]. 中国科学:地球科学,2021,51(7):1166-1180. LI Hongbing,ZHANG Jiajia,PAN Haojie,et al. Nonlinear simultaneous inversion of pore structure and physical parameters based on elastic impedance[J]. Scientia Sinica(Terrae),2021,51(7):1166-1180.
[9] 桂金咏,高建虎,雍学善,等. 基于双相介质理论的储层参数反演方法[J]. 地球物理学报,2015,58(9):3424-3438. GUI Jinyong,GAO Jianhu,YONG Xueshan,et al. Inversion of reservoir parameters based on dual-phase media theory[J]. Chinese Journal of Geophysics,2015,58(9):3424-3438.
[10] LANG Xiaozheng,GRANA D. Bayesian linearized petrophysical AVO inversion[J]. Geophysics,2018,83(3):M1-M13.
[11] LIU Qian,DONG Ning,JI Yuxin,et al. Direct reservoir property estimation based on prestack seismic inversion[J]. Journal of Petroleum Science and Engineering,2018,171:1475-1486.
[12] 李坤,印兴耀,宗兆云. 岩石物理驱动的相约束叠前地震概率化反演方法[J]. 中国科学:地球科学,2020,50(6):832-850. LI Kun,YIN Xingyao,ZONG Zhaoyun. Facies-constrained prestack seismic probabilistic inversion driven by rock physics[J]. Scientia Sinica(Terrae),2020,50(6):832-850.
[13] FJELDSTAD T,AVSETH P,OMRE H. A one-step Bayesian inversion framework for 3D reservoir characterization based on a Gaussian mixture model:A Norwegian sea demonstration[J]. Geophysics,2021,86(2):R221-R236.
[14] AVSETH P,MUKERJI T,MAVKO G. Quantitative seismic interpretation:Applying rock physics tools to reduce interpretation risk[M]. Cambridge:Cambridge University Press,2010.
[15] 彭达,肖富森,冉崎,等. 基于KT模型流体替换的岩石物理参数反演方法[J]. 岩性油气藏,2018,30(5):82-90. PENG Da,XIAO Fusen,RAN Qi,et al. Inversion of rock physics parameters based on KT model fluid substitution[J]. Lithologic Reservoirs,2018,30(5):82-90.
[16] 桂金咏,高建虎,李胜军,等. 基于弹性参数加权统计的地震岩相预测方法[J]. 地球物理学报,2020,63(1):298-312. GUI Jinyong,GAO Jianhu,LI Shengjun,et al. The method of seismic lithofacies prediction based on weighted statistics of elastic parameters[J]. Chinese Journal of Geophysics,2020,63(1):298-312.
[17] GUI Jinyong,YIN Xingyao,GAO Jianhu,et al. Petrophysical properties prediction of deep dolomite reservoir considering pore structure[J]. Acta Geophysica,2022,70(4):1507-1518.
[18] 敖亦乐. 随机森林类算法在地球物理勘探中的相关应用技术研究[D]. 北京:中国石油大学(北京),2022. AO Yile. Research on the random forest algorithms and their applications in geophysical exploration interpretation[D]. Beijing:China University of Petroleum(Beijing),2022.
[19] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32.
[20] HARRIS J R,GRUNSKY E C. Predictive lithological mapping of Canada's North using random forest classification applied to geophysical and geochemical data[J]. Computers & Geosciences,2015,80:9-25.
[21] 宋建国,高强山,李哲. 随机森林回归在地震储层预测中的应用[J]. 石油地球物理勘探,2016,51(6):1202-1211. SONG Jianguo,GAO Qiangshan,LI Zhe. Application of random forests for regression to seismic reservoir prediction[J]. Oil Geophysical Prospecting,2016,51(6):1202-1211.
[22] 王光宇,宋建国,徐飞,等. 不平衡样本集随机森林岩性预测方法[J]. 石油地球物理勘探,2021,56(4):679-687. WANG Guangyu,SONG Jianguo,XU Fei,et al. Random forests lithology prediction method for imbalanced data sets[J]. Oil Geophysical Prospecting,2021,56(4):679-687.
[23] KUHN S,CRACKNELL M J,READING A M. Lithologic mapping using random forests applied to geophysical and remotesensing data:A demonstration study from the eastern Goldfields of AustraliaLithologic mapping with RF[J]. Geophysics, 2018,83(4):B183-B193.
[24] CRACKNELL M J,READING A M. Geological mapping using remote sensing data:A comparison of five machine learning algorithms,their response to variations in the spatial distribution of training data and the use of explicit spatial information[J]. Computers & Geosciences,2014,63:22-33.
[25] CRACKNELL M J. Machine learning for geological mapping:Algorithms and applications[D]. Tasmania:University of Tasmania,2014.
[26] KIM Y,HARDISTY R,TORRES E,et al. Seismic facies classification using random forest algorithm[G]. SEG Technical Program Expanded Abstracts,2018:2161-2165.
[27] LUBO-ROBLES D,DEVEGOWDAD,JAYARAM V,et al. Quantifying the sensitivity of seismic facies classification to seismic attribute selection:An explainable machine-learning study[J]. Interpretation,2022,10(3):SE41-SE69.
[28] ALVAREZ P,BOLIVAR F,LUCA M,et al. Multi-attribute rotation scheme:A tool for reservoir property prediction from seismic inversion attributes[J]. Interpretation,2015,3(4):SAE9-SAE18.
[29] WHITCOMBE D N,CONNOLLY P A,REAGAN R L,et al. Extended elastic impedance for fluid and lithology prediction[J]. Geophysics,2002,67(1):63-67.
[30] NEVES A,MUSTAFA M,RUTTY M. Pseudo-gamma ray volume from extended elastic impedance inversion for gas exploration[J]. The Leading Edge,2004,23(6):536-540.
[31] ZHANG Guoyin,WANG Zhizhang,CHEN Yangkang. Deep learning for seismic lithology prediction[J]. Geophysical Journal International,2018,215(2):1368-1387.
[32] HOSSAIN T M,WATADA J,JIAN Zhiwen,et al. Missing well log data handling in complex lithology prediction:An nis apriori algorithm approach[J]. International Journal of Innovative Computing,Information and Control,2020,16(3):1077-1091.
[33] CHAWLA N V,BOWYER K W,HALL L O,et al. SMOTE:Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research,2002,16:321-357.
[34] HAN Hui,WANG Wenyuan,MAO Binghuan. BorderlineSMOTE:A new over-sampling method in imbalanced data sets learning[M]//GOOS G,HARTMANIS J. Lecture notes in computer science. Heidelberg:Springer,2005:878-887.
[35] STROBL C,BOULESTEIX A L,ZEILEIS A,et al. Bias in random forest variable importance measures:Illustrations,sources and a solution[J]. BMC Bioinformatics,2007,8(1):1-21.
[36] GOODWAY B,CHEN Taiwen,DOWNTON J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters "λρ","μρ",&"λ/μ fluid stack",from P and S inversions[G]. SEG Technical Program Expanded Abstracts, 1997:183-186.
[1] GUO Haifeng, XIAO Kunye, CHENG Xiaodong, DU Yebo, DU Xudong, NI Guohui, LI Xianbing, JI Ran. Determination of effective permeability of granitic buried-hill fractured reservoirs in Bongor Basin,Chad [J]. Lithologic Reservoirs, 2023, 35(6): 117-126.
[2] TANG Yuzhe, CHAI Hui, WANG Hongjun, ZHANG Liangjie, CHEN Pengyu, ZHANG Wenqi, JIANG Lingzhi, PAN Xingming. Characteristics and new prediction methods of Jurassic subsalt carbonate reservoirs in the eastern right bank of Amu Darya,Central Asia [J]. Lithologic Reservoirs, 2023, 35(6): 147-158.
[3] XU Xin, YANG Wuyang, ZHANG Kai, WEI Xinjian, ZHANG Xiangyang, LI Haishan. Optimization of 3D first-arrival traveltime tomography inversion [J]. Lithologic Reservoirs, 2023, 35(4): 79-89.
[4] WU Zhongyuan, ZHANG Xin, ZHANG Chunlei, WANG Haiying. Lithology identification based on LSTM recurrent neural network [J]. Lithologic Reservoirs, 2021, 33(3): 120-128.
[5] ZHANG Yan, GAO Shichen, MENG Wanying, CHENG Yuhong, JIANG Sisi. Uncertainty analysis in AVO forward modeling for tight sandstone reservoirs [J]. Lithologic Reservoirs, 2020, 32(6): 120-128.
[6] SUN Yushu, HUANG Yun, LIANG Ting, JI Hancheng, XIANG Pengfei, XU Xinrong. Identification of complex carbonate lithology by logging based on XGBoost algorithm [J]. Lithologic Reservoirs, 2020, 32(4): 98-106.
[7] ZHANG Lu, HE Feng, CHEN Xiaozhi, ZHU Yanhe, HAN Gang, LI Qixin. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control [J]. Lithologic Reservoirs, 2020, 32(2): 108-114.
[8] SONG Xuanyi, LIU Yuetian, MA Jing, WANG Junqiang, KONG Xiangming, REN Xingnan. Productivity forecast based on support vector machine optimized by grey wolf optimizer [J]. Lithologic Reservoirs, 2020, 32(2): 134-140.
[9] LI Xiansheng, LIU Xiangjun, XIONG Jian, LI Wei, LIANG Lixi. Influence of bedding on compressional wave characteristics of shales [J]. Lithologic Reservoirs, 2019, 31(3): 152-160.
[10] YAN Wei, LIU Shuai, FENG Minggang, ZHANG Chong, FAN Shuping. Well logging evaluation methods of key parameters for shale gas reservoir in Dingshan block,Sichuan Basin [J]. Lithologic Reservoirs, 2019, 31(3): 95-104.
[11] LI Xiao, LI Min, CHEN Meng, TANG Yanbing. Electrical response characteristics of Fontainebleau sandstone in Paris Basin,France [J]. Lithologic Reservoirs, 2019, 31(1): 130-138.
[12] LIU Huaqing, SU Mingjun, NI Changkuan, HONG Zhong, CUI Xiangli, HU Kaifeng, LI Zhengyang, MAO Junli. Thin bed prediction from interbeded background: Revised seismic sedimentological method [J]. Lithologic Reservoirs, 2018, 30(2): 1-11.
[13] LIU Zhiying, ZHANG Chengguang, TANG Jun, XIAO Chengwen. Influence of fracture on rock resistivity and its application in saturation calculation [J]. Lithologic Reservoirs, 2018, 30(2): 120-128.
[14] WANG Yongsheng, HU Jie, ZHANG Jing, WANG Chuanwu, ZHU Bo, WU Yongguo. Wide-frequency prospecting technology and its application on deep-seated Jurassic exploration in northern margin of Qaidam Basin [J]. Lithologic Reservoirs, 2017, 29(6): 101-107.
[15] CHU Cuijin, XIA Zhilin, YANG Zhiqiang. Logging identification and evaluation of tight sandstone gas in the southern Yanchuan block [J]. Lithologic Reservoirs, 2017, 29(2): 131-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: