岩性油气藏 ›› 2019, Vol. 31 ›› Issue (3): 27–36.doi: 10.12108/yxyqc.20190304

• 油气地质 • 上一篇    下一篇

重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征

王朋飞1,2, 姜振学2, 杨彩虹3, 金璨3, 吕鹏1, 王海华1   

  1. 1. 中国地质调查局 地学文献中心, 北京 100083;
    2. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    3. 中国石化上海海洋油气分公司, 上海 200120
  • 收稿日期:2018-11-05 修回日期:2019-01-19 出版日期:2019-05-21 发布日期:2019-05-06
  • 作者简介:王朋飞(1988-),男,博士,助理研究员,主要从事非常规油气成藏与地质评价及能源信息方面的研究工作。地址:(100083)北京市海淀区学院路29号。Email:wpfupc725@outlook.com。
  • 基金资助:
    中国地质调查局“国际地质调查动态跟踪与分析”(编号:20190414)和“南方页岩气基础地质调查工程项目”(编号:12120114046701)联合资助

Organic pore development characteristics of Longmaxi and Niutitang shales in the periphery of Chongqing

WANG Pengfei1,2, JIANG Zhenxue2, YANG Caihong3, JIN Can3, LYU Peng1, WANG Haihua1   

  1. 1. Geoscience Documentation Center, China Geological Survey, Beijing 100083, China;
    2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    3. SINOPEC Shanghai Offshore Petroleum Company, Shanghai 200120, China
  • Received:2018-11-05 Revised:2019-01-19 Online:2019-05-21 Published:2019-05-06

摘要: 针对牛蹄塘组页岩气勘探开发过程中存在产气量较低,产气持续时间较短等问题,以渝东南下志留统龙马溪组页岩和渝东北下寒武统牛蹄塘组页岩为对象进行对比,重点剖析2套页岩的孔隙储集能力及其演化特征。结果表明:龙马溪组页岩和牛蹄塘组页岩的有机质孔隙发育特征存在较大差别:龙马溪组页岩内部的固体干酪根有机质孔隙数量少,孔径小,连通性差,但其焦沥青内部有机质孔隙数量多,孔径大,连通性好。牛蹄塘组页岩内部的固体干酪根和焦沥青均不发育有机质孔隙。储层热演化程度对页岩有机质孔隙的发育有着直接的控制作用。龙马溪组页岩由于古埋深较牛蹄塘组页岩浅,所经历的热演化作用相对较弱,适宜的热演化程度保留了龙马溪组页岩焦沥青内部大量的有机质孔隙,但其固体干酪根由于演化时间相对较长,有机质孔隙数量减少。渝东北牛蹄塘组页岩埋深过大,储层过度演化达到变质期导致其内部固体干酪根和焦沥青均不发育有机质孔隙。针对牛蹄塘组页岩气的高效勘探开发应寻找热演化程度适中的页岩分布区。

关键词: 页岩气, 龙马溪组, 牛蹄塘组, 有机质孔隙, 热演化, 重庆周缘

Abstract: In the exploration and development process of shale gas in Niutitang Formation, there are problems such as low gas production and short duration. By comparing the Lower Silurian Longmaxi shale in southeastern Chongqing with the Lower Cambrian Niutitang shale in northeastern Chongqing, the pore reservoir capacity and evolution characteristics of the two sets of shale were analyzed. The results show that there are significant differences in organic pore development characteristics of the Longmaxi shale and the Niutitang shale. The organic pores inside solid kerogen in the Longmaxi shale have a small number, small pore size and poor connectivity, but the amount and size of organic pores in pyrobitumen are large, and the connectivity is good. The solid kerogen and pyrobitumen in the Niutitang shale do not develop organic pores. The degree of reservoir thermal evolution has a direct control effect on the development of organic pores in shale. The Longmaxi shale is relatively weak in thermal evolution as palaeo-buried depth is shallower than the Niutitang shale. The appropriate degree of thermal evolution preserves a large amount of organic pores in the pyrobitumen of the Longmaxi shale, but the solid kerogen has a relatively long evolution time and the number of organic pores decreased. The palaeo-buried depth of the Niuzhitang shale in northeastern Chongqing is too large, and reservoir reached the metamorphic period due to excessive evolution, resulting in the absence of organic pores in the solid kerogen and pyrobitumen. For the efficient exploration and development of shale gas in the Niutitang Formation, a shale distribution area with moderate thermal evolution should be sought.

Key words: shale gas, Longmaxi Formation, Niutitang Formation, organic pores, thermal evolution, periphery of Chongqing

中图分类号: 

  • TE122.2
[1] 赵文智, 李建忠, 杨涛, 等.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 2016, 43(4):499-510. ZHAO W Z, LI J Z, YANG T, et al. Geological difference and its significance of marine shale gases in South China. Petroleum Exploration and Development, 2016, 43(4):499-510.
[2] LOUCKS R G, REED R M, RUOOEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 2012, 96(6):1071-1098.
[3] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79(12):848-861.
[4] CLARKSON C R, SOLANO N, BUSTIN RM, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption,and mercury intrusion. Fuel, 2013, 103:606-616.
[5] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation(Devonian), Pennsylvania. AAPG Bulletin, 2013, 97(2):177-200.
[6] SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bulletin, 2011, 95(12):2017-2030.
[7] TIAN H, PAN L, XIAO X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N 2 adsorption and FE-SEM methods. Marine and Petroleum Geology, 2013, 48:8-19.
[8] TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich lower Cambrian shales in Qiannan depression of Guizhou Province, southwestern China. Marine and Petroleum Geology, 2015, 62:28-43.
[9] 余川, 周洵, 方光建, 等.地层温压条件下页岩吸附性能变化特征:以渝东北地区龙马溪组为例. 岩性油气藏, 2018, 30(6):10-17. YU C, ZHOU X, FANG G J, et al. Adsorptivity of shale under the formation temperature and pressure:a case of Longmaxi Formation in northeastern Chongqing. Lithologic Reservoirs, 2018, 30(6):10-17.
[10] JI W M, SONG Y, RUI Z H, et al. Pore characterization of isolated organic matter from high matured gas shale reservoir. International Journal of Coal Geology, 2017, 174:31-40.
[11] 陈居凯, 朱炎铭, 崔兆帮, 等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[12] JIAO K, YAO S P, LIU C, et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing:an example from the lower Silurian Longmaxi shale, Upper Yangtze region, China. International Journal of Coal Geology, 2014, 128:1-11.
[13] MA Y, ZHONG N N, LI D H, et al. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping shale in the north-eastern part of the Upper Yangtze area, China:a possible microscopic mechanism for gas preservation. International Journal of Coal Geology, 2015, 137:38-54.
[14] WANG P F, JIANG Z X, JI W M, et al. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China:Evidence from SEM digital images and fractal and multifractal geometries. Marine and Petroleum Geology, 2016, 72:122-138.
[15] 王玉满, 李新景, 陈波, 等.海相页岩有机质炭化的热成熟度下限及勘探风险.石油勘探与开发, 2018, 45(3):385-395. WANG Y M, LI X J, CHEN B, et al. Lower limit of thermal maturity for the carbonification of organic matters in marine shales and its exploration risk. Petroleum Exploration and Development, 2018, 45(3):385-395.
[16] 姜生玲, 汪生秀, 洪克岩, 等.渝东北地区下古生界页岩气聚集条件及资源潜力.岩性油气藏, 2017, 29(5):11-18. JIANG S L, WANG S X, HONG K Y, et al. Accumulation conditions of Lower Paleozoic shale gas and its resources in northeastern Chongqing. Lithologic Reservoirs, 2017, 29(5):11-18.
[17] 刘忠宝, 冯动军, 高波, 等.上扬子地区下寒武统高演化页岩微观孔隙特征.天然气地球科学, 2017, 28(7):1096-1107. LIU Z B, FENG D J, GAO B, et al. Micropore characteristics of high thermal evolution shale in the Lower Cambrian series in Upper Yangtze area. Natural Gas Geoscience, 2017, 28(7):1096-1107.
[18] 沈瑞, 胡志明, 郭和坤, 等.四川盆地长宁龙马溪组页岩赋存空间及含气规律. 岩性油气藏, 2018, 30(5):11-17. SHEN R, HU Z M, GUO H K, et al. Storage space and gas content law of Longmaxi shale in Changning area, Sichuan Basin. Lithologic Reservoirs, 2018, 30(5):11-17.
[19] 赵建华, 金之钧,金振奎, 等.岩石学方法区分页岩中有机质类型.石油实验地质, 2016, 38(4):514-520. ZHAO J H, JIN Z J, JIN Z K, et al. Petrographic methods to distinguish organic matter type in shale. Petroleum Geology & Experiment, 2016, 38(4):514-520.
[20] 王香增, 张丽霞, 雷裕红, 等.低熟湖相页岩内运移固体有机质和有机质孔特征:以鄂尔多斯盆地东南部延长组长7油层组页岩为例.石油学报, 2018, 39(2):141-151. WANG X Z, ZHANG L X, LEI Y H, et al. Characteristics of migrated solid organic matters and organic pores in low maturity lacustrine shale:a case study of the shale in Chang 7 Oil-bearing formation of Yanchang Formation,southeastern Ordos Basin. Acta Petrolei Sinica, 2018, 39(2):141-151.
[21] 刘树根, 邓宾, 钟勇, 等.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用.地学前缘, 2016, 23(1):11-28. LIU S G, DENG B, ZHONG Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic Shale gas across the Sichuan Basin and its back. Earth Science Frontiers, 2016, 23(1):11-28.
[22] TISSOT B P, PELET R, UNGERER P H. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bulletin, 1987, 71(12):1445-1466.
[23] TISSOT B P. Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bulletin, 1974, 58(3):499-506.
[24] 郭秋麟, 武娜, 任洪佳, 等.中低成熟阶段页岩有机质孔预测模型探讨.岩性油气藏, 2017, 29(6):1-7. GUO Q L, WU N, REN H J, et al. Prediction models of organic pores in shale with low to moderate maturity. Lithologic Reservoirs, 2017, 29(6):1-7.
[25] GUO X J, SHEN Y H, HE S L. Quantitative pore characterization and the relationship between pore distributions and organic matter in shale based on Nano-CT image analysis:a case study for a lacustrine shale reservoir in the Triassic Chang 7 member, Ordos Basin,China. Journal of Natural Gas Science and Engineering, 2015, 27:1630-1640.
[26] 薛莲花, 杨巍, 仲佳爱, 等.富有机质页岩生烃阶段孔隙演化:来自鄂尔多斯延长组地质条件约束下的热模拟实验证据. 地质学报, 2015, 89(5):970-978. XUE L H, YANG W, ZHONG J A, et al. Porous evolution of the organic-rich shale from simulated experiment with geological constrains, samples from Yanchang Formation in Ordos Basin. Acta Geologica Sinica, 2015, 89(5):970-978.
[27] 聂海宽, 金之钧, 边瑞康, 等.四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏"富集.石油学报, 2016, 37(5):557-571. NIE H K, JIN Z J, BIAN R K et al. The "source-cap hydrocarbon-controlling" enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its surrounding. Acta Petrolei Sinica, 2016, 37(5):557-571.
[28] 吉利明, 吴远东, 贺聪, 等.富有机质泥页岩高压生烃模拟与孔隙演化特征.石油学报, 2016, 37(2):172-181. JI L M, WU Y D, HE C, et al. High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organicrich mudstone and shale. Acta Petrolei Sinica, 2016, 37(2):172-181.
[29] 赵文智, 王兆云, 王东良, 等.分散液态烃的成藏地位与意义. 石油勘探与开发, 2015, 42(4):401-413. ZHAO W Z, WANG Z Y, WANG D L, et al. Contribution and significance of dispersed liquid hydrocarbons to reservoir formation. Petroleum Exploration and Development, 2015, 42(4):401-413.
[30] 胡宗全, 杜伟, 彭勇民, 等.页岩微观孔隙特征及源-储关系:以川东南地区五峰组-龙马溪组为例. 石油与天然气地质, 2015, 36(6):1001-1008. HU Z Q, DU W, PENG Y M, et al. Microscopic pore characteristics and the source-reservoir relationship of shale:a case study from the Wufeng and Longmaxi Formations in southeast Sichuan Basin. Oil & Gas Geology, 2015, 36(6):1001-1008.
[31] 曹涛涛, 邓模, 刘虎, 等.可溶有机质对泥页岩储集物性的影响.岩性油气藏, 2018, 30(3):43-51. CAO T T, DENG M, LIU H, et al. Influences of soluble organic matter on reservoir properties of shale. Lithologic Reservoirs, 2018, 30(3):43-51.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[3] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[4] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[5] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[6] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[7] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[8] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[9] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[10] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[11] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[12] 耿涛, 毛小平, 王昊宸, 范晓杰, 吴冲龙. 伦坡拉盆地热演化史及有利区带预测[J]. 岩性油气藏, 2019, 31(6): 67-78.
[13] 王跃鹏, 刘向君, 梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.
[14] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
[15] 姜瑞忠, 张福蕾, 崔永正, 潘红, 张旭, 张春光, 沈泽阳. 考虑应力敏感和复杂运移的页岩气藏压力动态分析[J]. 岩性油气藏, 2019, 31(4): 149-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .