岩性油气藏 ›› 2019, Vol. 31 ›› Issue (3): 27–36.doi: 10.12108/yxyqc.20190304

• 油气地质 • 上一篇    下一篇

重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征

王朋飞1,2, 姜振学2, 杨彩虹3, 金璨3, 吕鹏1, 王海华1   

  1. 1. 中国地质调查局 地学文献中心, 北京 100083;
    2. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    3. 中国石化上海海洋油气分公司, 上海 200120
  • 收稿日期:2018-11-05 修回日期:2019-01-19 出版日期:2019-05-21 发布日期:2019-05-06
  • 第一作者:王朋飞(1988-),男,博士,助理研究员,主要从事非常规油气成藏与地质评价及能源信息方面的研究工作。地址:(100083)北京市海淀区学院路29号。Email:wpfupc725@outlook.com。
  • 基金资助:
    中国地质调查局“国际地质调查动态跟踪与分析”(编号:20190414)和“南方页岩气基础地质调查工程项目”(编号:12120114046701)联合资助

Organic pore development characteristics of Longmaxi and Niutitang shales in the periphery of Chongqing

WANG Pengfei1,2, JIANG Zhenxue2, YANG Caihong3, JIN Can3, LYU Peng1, WANG Haihua1   

  1. 1. Geoscience Documentation Center, China Geological Survey, Beijing 100083, China;
    2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    3. SINOPEC Shanghai Offshore Petroleum Company, Shanghai 200120, China
  • Received:2018-11-05 Revised:2019-01-19 Online:2019-05-21 Published:2019-05-06

摘要: 针对牛蹄塘组页岩气勘探开发过程中存在产气量较低,产气持续时间较短等问题,以渝东南下志留统龙马溪组页岩和渝东北下寒武统牛蹄塘组页岩为对象进行对比,重点剖析2套页岩的孔隙储集能力及其演化特征。结果表明:龙马溪组页岩和牛蹄塘组页岩的有机质孔隙发育特征存在较大差别:龙马溪组页岩内部的固体干酪根有机质孔隙数量少,孔径小,连通性差,但其焦沥青内部有机质孔隙数量多,孔径大,连通性好。牛蹄塘组页岩内部的固体干酪根和焦沥青均不发育有机质孔隙。储层热演化程度对页岩有机质孔隙的发育有着直接的控制作用。龙马溪组页岩由于古埋深较牛蹄塘组页岩浅,所经历的热演化作用相对较弱,适宜的热演化程度保留了龙马溪组页岩焦沥青内部大量的有机质孔隙,但其固体干酪根由于演化时间相对较长,有机质孔隙数量减少。渝东北牛蹄塘组页岩埋深过大,储层过度演化达到变质期导致其内部固体干酪根和焦沥青均不发育有机质孔隙。针对牛蹄塘组页岩气的高效勘探开发应寻找热演化程度适中的页岩分布区。

关键词: 页岩气, 龙马溪组, 牛蹄塘组, 有机质孔隙, 热演化, 重庆周缘

Abstract: In the exploration and development process of shale gas in Niutitang Formation, there are problems such as low gas production and short duration. By comparing the Lower Silurian Longmaxi shale in southeastern Chongqing with the Lower Cambrian Niutitang shale in northeastern Chongqing, the pore reservoir capacity and evolution characteristics of the two sets of shale were analyzed. The results show that there are significant differences in organic pore development characteristics of the Longmaxi shale and the Niutitang shale. The organic pores inside solid kerogen in the Longmaxi shale have a small number, small pore size and poor connectivity, but the amount and size of organic pores in pyrobitumen are large, and the connectivity is good. The solid kerogen and pyrobitumen in the Niutitang shale do not develop organic pores. The degree of reservoir thermal evolution has a direct control effect on the development of organic pores in shale. The Longmaxi shale is relatively weak in thermal evolution as palaeo-buried depth is shallower than the Niutitang shale. The appropriate degree of thermal evolution preserves a large amount of organic pores in the pyrobitumen of the Longmaxi shale, but the solid kerogen has a relatively long evolution time and the number of organic pores decreased. The palaeo-buried depth of the Niuzhitang shale in northeastern Chongqing is too large, and reservoir reached the metamorphic period due to excessive evolution, resulting in the absence of organic pores in the solid kerogen and pyrobitumen. For the efficient exploration and development of shale gas in the Niutitang Formation, a shale distribution area with moderate thermal evolution should be sought.

Key words: shale gas, Longmaxi Formation, Niutitang Formation, organic pores, thermal evolution, periphery of Chongqing

中图分类号: 

  • TE122.2
[1] 赵文智, 李建忠, 杨涛, 等.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 2016, 43(4):499-510. ZHAO W Z, LI J Z, YANG T, et al. Geological difference and its significance of marine shale gases in South China. Petroleum Exploration and Development, 2016, 43(4):499-510.
[2] LOUCKS R G, REED R M, RUOOEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 2012, 96(6):1071-1098.
[3] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79(12):848-861.
[4] CLARKSON C R, SOLANO N, BUSTIN RM, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption,and mercury intrusion. Fuel, 2013, 103:606-616.
[5] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation(Devonian), Pennsylvania. AAPG Bulletin, 2013, 97(2):177-200.
[6] SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bulletin, 2011, 95(12):2017-2030.
[7] TIAN H, PAN L, XIAO X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N 2 adsorption and FE-SEM methods. Marine and Petroleum Geology, 2013, 48:8-19.
[8] TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich lower Cambrian shales in Qiannan depression of Guizhou Province, southwestern China. Marine and Petroleum Geology, 2015, 62:28-43.
[9] 余川, 周洵, 方光建, 等.地层温压条件下页岩吸附性能变化特征:以渝东北地区龙马溪组为例. 岩性油气藏, 2018, 30(6):10-17. YU C, ZHOU X, FANG G J, et al. Adsorptivity of shale under the formation temperature and pressure:a case of Longmaxi Formation in northeastern Chongqing. Lithologic Reservoirs, 2018, 30(6):10-17.
[10] JI W M, SONG Y, RUI Z H, et al. Pore characterization of isolated organic matter from high matured gas shale reservoir. International Journal of Coal Geology, 2017, 174:31-40.
[11] 陈居凯, 朱炎铭, 崔兆帮, 等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[12] JIAO K, YAO S P, LIU C, et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing:an example from the lower Silurian Longmaxi shale, Upper Yangtze region, China. International Journal of Coal Geology, 2014, 128:1-11.
[13] MA Y, ZHONG N N, LI D H, et al. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping shale in the north-eastern part of the Upper Yangtze area, China:a possible microscopic mechanism for gas preservation. International Journal of Coal Geology, 2015, 137:38-54.
[14] WANG P F, JIANG Z X, JI W M, et al. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China:Evidence from SEM digital images and fractal and multifractal geometries. Marine and Petroleum Geology, 2016, 72:122-138.
[15] 王玉满, 李新景, 陈波, 等.海相页岩有机质炭化的热成熟度下限及勘探风险.石油勘探与开发, 2018, 45(3):385-395. WANG Y M, LI X J, CHEN B, et al. Lower limit of thermal maturity for the carbonification of organic matters in marine shales and its exploration risk. Petroleum Exploration and Development, 2018, 45(3):385-395.
[16] 姜生玲, 汪生秀, 洪克岩, 等.渝东北地区下古生界页岩气聚集条件及资源潜力.岩性油气藏, 2017, 29(5):11-18. JIANG S L, WANG S X, HONG K Y, et al. Accumulation conditions of Lower Paleozoic shale gas and its resources in northeastern Chongqing. Lithologic Reservoirs, 2017, 29(5):11-18.
[17] 刘忠宝, 冯动军, 高波, 等.上扬子地区下寒武统高演化页岩微观孔隙特征.天然气地球科学, 2017, 28(7):1096-1107. LIU Z B, FENG D J, GAO B, et al. Micropore characteristics of high thermal evolution shale in the Lower Cambrian series in Upper Yangtze area. Natural Gas Geoscience, 2017, 28(7):1096-1107.
[18] 沈瑞, 胡志明, 郭和坤, 等.四川盆地长宁龙马溪组页岩赋存空间及含气规律. 岩性油气藏, 2018, 30(5):11-17. SHEN R, HU Z M, GUO H K, et al. Storage space and gas content law of Longmaxi shale in Changning area, Sichuan Basin. Lithologic Reservoirs, 2018, 30(5):11-17.
[19] 赵建华, 金之钧,金振奎, 等.岩石学方法区分页岩中有机质类型.石油实验地质, 2016, 38(4):514-520. ZHAO J H, JIN Z J, JIN Z K, et al. Petrographic methods to distinguish organic matter type in shale. Petroleum Geology & Experiment, 2016, 38(4):514-520.
[20] 王香增, 张丽霞, 雷裕红, 等.低熟湖相页岩内运移固体有机质和有机质孔特征:以鄂尔多斯盆地东南部延长组长7油层组页岩为例.石油学报, 2018, 39(2):141-151. WANG X Z, ZHANG L X, LEI Y H, et al. Characteristics of migrated solid organic matters and organic pores in low maturity lacustrine shale:a case study of the shale in Chang 7 Oil-bearing formation of Yanchang Formation,southeastern Ordos Basin. Acta Petrolei Sinica, 2018, 39(2):141-151.
[21] 刘树根, 邓宾, 钟勇, 等.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用.地学前缘, 2016, 23(1):11-28. LIU S G, DENG B, ZHONG Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic Shale gas across the Sichuan Basin and its back. Earth Science Frontiers, 2016, 23(1):11-28.
[22] TISSOT B P, PELET R, UNGERER P H. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bulletin, 1987, 71(12):1445-1466.
[23] TISSOT B P. Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bulletin, 1974, 58(3):499-506.
[24] 郭秋麟, 武娜, 任洪佳, 等.中低成熟阶段页岩有机质孔预测模型探讨.岩性油气藏, 2017, 29(6):1-7. GUO Q L, WU N, REN H J, et al. Prediction models of organic pores in shale with low to moderate maturity. Lithologic Reservoirs, 2017, 29(6):1-7.
[25] GUO X J, SHEN Y H, HE S L. Quantitative pore characterization and the relationship between pore distributions and organic matter in shale based on Nano-CT image analysis:a case study for a lacustrine shale reservoir in the Triassic Chang 7 member, Ordos Basin,China. Journal of Natural Gas Science and Engineering, 2015, 27:1630-1640.
[26] 薛莲花, 杨巍, 仲佳爱, 等.富有机质页岩生烃阶段孔隙演化:来自鄂尔多斯延长组地质条件约束下的热模拟实验证据. 地质学报, 2015, 89(5):970-978. XUE L H, YANG W, ZHONG J A, et al. Porous evolution of the organic-rich shale from simulated experiment with geological constrains, samples from Yanchang Formation in Ordos Basin. Acta Geologica Sinica, 2015, 89(5):970-978.
[27] 聂海宽, 金之钧, 边瑞康, 等.四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏"富集.石油学报, 2016, 37(5):557-571. NIE H K, JIN Z J, BIAN R K et al. The "source-cap hydrocarbon-controlling" enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its surrounding. Acta Petrolei Sinica, 2016, 37(5):557-571.
[28] 吉利明, 吴远东, 贺聪, 等.富有机质泥页岩高压生烃模拟与孔隙演化特征.石油学报, 2016, 37(2):172-181. JI L M, WU Y D, HE C, et al. High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organicrich mudstone and shale. Acta Petrolei Sinica, 2016, 37(2):172-181.
[29] 赵文智, 王兆云, 王东良, 等.分散液态烃的成藏地位与意义. 石油勘探与开发, 2015, 42(4):401-413. ZHAO W Z, WANG Z Y, WANG D L, et al. Contribution and significance of dispersed liquid hydrocarbons to reservoir formation. Petroleum Exploration and Development, 2015, 42(4):401-413.
[30] 胡宗全, 杜伟, 彭勇民, 等.页岩微观孔隙特征及源-储关系:以川东南地区五峰组-龙马溪组为例. 石油与天然气地质, 2015, 36(6):1001-1008. HU Z Q, DU W, PENG Y M, et al. Microscopic pore characteristics and the source-reservoir relationship of shale:a case study from the Wufeng and Longmaxi Formations in southeast Sichuan Basin. Oil & Gas Geology, 2015, 36(6):1001-1008.
[31] 曹涛涛, 邓模, 刘虎, 等.可溶有机质对泥页岩储集物性的影响.岩性油气藏, 2018, 30(3):43-51. CAO T T, DENG M, LIU H, et al. Influences of soluble organic matter on reservoir properties of shale. Lithologic Reservoirs, 2018, 30(3):43-51.
[1] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[2] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[3] 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132.
[4] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[5] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[6] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[7] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[8] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[9] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[10] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[11] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[12] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[13] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[14] 梁小聪, 牛杏, 胡明毅, 黎洋, 胡忠贵, 蔡全升. 湘鄂西下寒武统牛蹄塘组黑色页岩发育特征及沉积环境[J]. 岩性油气藏, 2023, 35(4): 102-114.
[15] 杨跃明, 张少敏, 金涛, 明盈, 郭蕊莹, 王兴志, 韩璐媛. 川南地区二叠系龙潭组页岩储层特征及勘探潜力[J]. 岩性油气藏, 2023, 35(1): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .