岩性油气藏 ›› 2019, Vol. 31 ›› Issue (3): 66–75.doi: 10.12108/yxyqc.20190308

• 油气地质 • 上一篇    下一篇

南华北盆地中牟—温县区块上古生界页岩气吸附特性

李沛1,2,3, 张金川1,2,3, 唐玄1,2,3, 霍志鹏1,2,3, 李振1,2,3, 刘君兰1,2,3, 李中明4   

  1. 1. 中国地质大学(北京)能源学院, 北京 100083;
    2. 国土资源部页岩气资源战略评价重点实验室, 北京 100083;
    3. 非常规天然气地质评价与开发工程北京市重点实验室, 北京 100083;
    4. 河南省地质调查院, 郑州 450000
  • 收稿日期:2018-12-03 修回日期:2019-01-09 出版日期:2019-05-21 发布日期:2019-05-06
  • 通讯作者: 张金川(1964-),男,博士,教授,博士生导师,主要从事非常规天然气地质、油气成藏机理及油气资源评价等方面的教学与研究工作。Email:zhangjc@cugb.edu.cn。 E-mail:zhangjc@cugb.edu.cn
  • 作者简介:李沛(1991-),男,中国地质大学(北京)在读博士研究生,研究方向为非常规天然气储层地质和评价技术。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)能源学院。Email:lipeicumt@126.com
  • 基金资助:
    国家重大科技专项“页岩气分类分级资源评价方法研究”(编号:2016ZX05034-002-001)、河南省重大科技专项“河南省海陆过渡相页岩气富集规律及评价技术研究”(编号:151100311000)、中国博士后科学基金资助项目“煤和灰岩在海陆过渡相页岩气富集高产中的作用”(编号:2018T1124)和优秀导师基金项目“页岩润湿性与甲烷吸附耦合作用研究”(编号:2652018235)联合资助

Adsorption characteristics of Upper Paleozoic shale gas in ZhongmouWenxian block,South North China Basin

LI Pei1,2,3, ZHANG Jinchuan1,2,3, TANG Xuan1,2,3, HUO Zhipeng1,2,3, LI Zhen1,2,3, LIU Junlan1,2,3, LI Zhongming4   

  1. 1. School of Energy Resources, China University of Geosciences, Beijing 100083, China;
    2. Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China;
    3. Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, Beijing 100083, China;
    4. Henan Institute of Geological Survey, Zhengzhou 450000, China
  • Received:2018-12-03 Revised:2019-01-09 Online:2019-05-21 Published:2019-05-06

摘要: 为研究南华北盆地中牟-温县地区上古生界山西组-太原组页岩气吸附特征及其主控因素,开展了等温吸附实验,并建立了温-压吸附综合预测模型。结果表明:①上古生界太原组页岩兰氏体积高,吸附能力强,但山西组页岩兰氏压力高,更有利于页岩气脱附解吸;②页岩吸附气量与埋深呈正相关关系,与含水率呈负相关关系,主要受控于深埋作用下的温压条件及相态传质作用;③温度对页岩吸附能力影响显著,温度升高可导致吸附气质量体积和兰氏体积衰减系数下降,但当埋深大于3 731 m时,温度对吸附量的控制作用明显减弱,而深埋条件下兰氏压力较大,使得降压解吸过程中高压段更利于甲烷解吸。因此,研究区北部深层(埋深> 3 500 m)页岩气仍然具有较大的开采潜力。该研究成果对深层页岩气勘探具有一定的指导意义。

关键词: 页岩, 吸附气, 等温吸附实验, 上古生界, 中牟-温县, 南华北盆地

Abstract: In order to study the characteristics of shale gas adsorption and its main controlling factors of Upper Paleozoic Shanxi-Taiyuan Formation in Zhongmou-Wenxian block of South North China Basin, a comprehensive prediction model of temperature-pressure adsorption was established based on the isothermal adsorption experiment of shale gas. The results show that:(1) Taiyuan shale with high Langmuir volume has stronger adsorption capacity compared with Shanxi shale, but Shanxi shale with higher Langmuir pressure is more conducive to shale gas desorption. (2) The buried depth and water content of shale are positively and negatively correlated with adsorbed gas content, respectively, which may be mainly controlled by temperature and pressure conditions and mass transfer in phase change. (3) The increasing temperature can lead to the decrease of adsorption capacity and Langmuir volume attenuation coefficient, reflecting temperature has a significant effect on the adsorption capacity of shale. However, the negative effect of temperature becomes weaker and weaker under deep burial conditions (>3 731 m), and the higher Langmuir pressure under deep burial condition makes the high pressure stage conducive to methane desorption in the depressurization process. Therefore, the deep shale gas (>3 500 m) in the northern part of the study area still has good exploitation potential. The research results have certain guiding significance for deep shale gas exploration.

Key words: shale, adsorbed gas, isothermal adsorption experiment, Upper Paleozoic, Zhongmou-Wenxian, South North China Basin

中图分类号: 

  • TE122
[1] 张金川, 薛会, 张德明, 等.页岩气及其成藏机理.现代地质, 2003, 17(4):466. ZHANG J C, XUE H, ZHANG D M, et al. Shale gas and its reservoir mechanism. Geoscience, 2003, 17(4):466.
[2] 张金川, 薛会, 卞昌蓉, 等.中国非常规天然气勘探雏议.天然气工业, 2006, 26(12):53-56. ZHANG J C, XUE H, BIAN C R, et al. Discussion on unconventional natural gas exploration in China. Natural Gas Industry, 2006, 26(12):53-56.
[3] CURTIS J B. Fractured shale-gas systems. AAPG Bulletin, 2002, 86(11):1921-1938.
[4] MAVOR M. Barnett shale gas-in-place volume including sorbed and free gas volume. Southwest SectionAAPG Convention, Texas, 2003.
[5] 李新景, 胡素云, 程克明. 北美裂缝性页岩气勘探开发的启示.石油勘探与开发, 2007, 34(4):392-400. LI X J, HU S Y, CHENG K M. Suggestions from the development of fractured shale gas in North America. Petroleum Exploration and Development, 2007, 34(4):392-400.
[6] 聂海宽, 张金川, 张培先, 等.福特沃斯盆地Barnett页岩气藏特征及启示.地质科技情报, 2009, 28(2):87-93. NIE H K, ZHANG J C, ZHANG P X, et al. Shale gas reservoir characteristics of Barnett shale gas reservoir in Fort Worth Basin. Geological Science and Technology Information, 2009, 28(2):87-93.
[7] 陈尚斌, 张楚, 刘宇.页岩气赋存状态及其分子模拟研究进展与展望.煤炭科学技术, 2018, 46(1):36-44. CHEN S B, ZHANG C, LIU Y. Research progress and prospect of shale gas occurrence and its molecular simulation. Coal Science and Technology, 2018, 46(1):36-44.
[8] 孔德涛, 宁正福, 杨峰, 等.页岩气吸附规律研究.科学技术与工程, 2014, 14(6):108-111. KONG D T, NING Z F, YANG F, et al. Study of methane adsorption on shales. Science Technology and Engineering, 2014, 14(6):108-111.
[9] LIU Y, ZHANG J C, TANG X, et al. Predicting the proportion of free and adsorbed gas by isotopic geochemical data:a case study from Lower Permian shale in the southern North China Basin(SNCB). International Journal of Coal Geology, 2016, 156:25-35.
[10] 曾维特, 张金川, 丁文龙, 等.延长组陆相页岩含气量及其主控因素:以鄂尔多斯盆地柳坪171井为例.天然气地球科学, 2014, 25(2):291-301. ZENG W T, ZHANG J C, DING W L, et al. The gas content of continental Yanchang shale and its main controlling factors:a case study of Liuping-171 well in Ordos Basin. Natural Gas Geoscience, 2014, 25(2):291-301.
[11] 党伟, 张金川, 黄潇, 等.陆相页岩含气性主控地质因素:以辽河西部凹陷沙河街组三段为例. 石油学报, 2015, 36(12):1516-1530. DANG W, ZHANG J C, HAUNG X, et al. Main-controlling geological factors of gas-bearing property of continental shale gas:a case study of member 3 rd Shahejie Formation in western Liaohe Sag. Acta Petrolei Sinica, 2015, 36(12):1516-1530.
[12] JI L M, ZHANG T W, MILLIKEN K L, et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 2012, 27(12):2533-2545.
[13] GASPARIK M, BERTIER P, GENSTERBLUM Y, et al. Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 2013, 123(2):34-51.
[14] 胡博文, 李斌, 鲁东升, 等.页岩气储层特征及含气性主控因素:以湘西北保靖地区龙马溪组为例.岩性油气藏, 2017, 29(3):83-91. HU B W, LI B, LU D S, et al. Characteristics and main controlling factors of shale gas reservoirs:a case from Longmaxi Formation in Baojing area, NW Hunan province. Lithologic Reservoirs, 2017, 29(3):83-91.
[15] 国土资源部油气资源战略研究中心.全国页岩气资源潜力调查评价及有利区优选(2009-2011年). 科技成果管理与研究, 2014(12):57-60. Strategic Research Center of Oil and Gas Resources, MLR. Investigation and evaluation of national shale gas resource potential and optimum selection of favorable areas(2009-2011). Management and Research on Scientific & Technological Achievements, 2014(12):57-60.
[16] DANG W, ZHANG J C, TANG X, et al. Investigation of gas content of organic-rich shale:a case study from Lower Permian shale in southern North China Basin, central China. Geoscience Frontiers, 2018, 9(2):559-575.
[17] DANG W, ZHANG J C, WEI X L, et al. Geological controls on methane adsorption capacity of Lower Permian transitional black shales in the Southern North China Basin, central China:Experimental results and geological implications. Journal of Petroleum Science and Engineering, 2017, 152:456-470.
[18] TANG S, ZHANG J C, DEREK E, et al. Lithofacies and pore characterization of the Lower Permian Shanxi and Taiyuan shales in the southern North China Basin. Journal of Natural Gas Science and Engineering, 2016, 36:644-661.
[19] CHEN Q, ZHANG J C, TANG X, et al. Pore structure characterization of the Lower Permian marine-continental transitional black shale in the Southern North China Basin, Central China. Energy Fuels, 2016, 30(12):10092-10105.
[20] 邵龙义, 张亮, 张敬凯, 等.河南省石炭-二叠系海陆过渡相页岩气成藏地质条件.矿业科学学报, 2016, 1(3):209-220. SHAO L Y, ZHANG L, ZHANG J K, et al. Accumulation conditions of shale gas in transitional marine-continental coal measures of the Carboniferous-Permian in Henan Province. Journal of Mining Science and Technology, 2016, 1(3):209-220.
[21] DANG W, ZHANG J C, TANG X, et al. Shale gas potential of Lower Permian marine-continental transitional black shales in the Southern North China Basin, central China:Characterization of organic geochemistry. Journal of Natural Gas Science and Engineering, 2016, 28:639-650.
[22] 王付斌, 马超, 安川.南华北盆地通许地区上古生界天然气勘探前景.岩性油气藏, 2016, 28(2):33-40. WANG F B, MA C, AN C. Gas exploration prospects of the Upper Paleozoic in Tongxu area, Southern North China Basin. Lithologic Reservoirs, 2016, 28(2):33-40.
[23] 李中明, 张栋, 张古彬, 等.豫西地区海陆过渡相含气页岩层系优选方法及有利区预测.地学前缘, 2016, 23(2):39-47. LI Z M, ZHANG D, ZHANG G B, et al. The transitional facies shale gas formation selection and favorable area prediction in the western Henan. Earth Science Frontiers, 2016, 23(2):39-47.
[24] 邱庆伦, 张木辰, 李中明, 等.牟页1井海陆过渡相页岩气压裂试气效果分析.石油地质与工程, 2017, 31(2):111-116. QIU Q L, ZHANG M C, LI Z M, et al. Analysis of fracturing and testing gas in marine-continental transitional shale of Mouye 1 Well. Petroleum Geology and Engineering, 2017, 31(2):111-116.
[25] 刁玉杰, 魏久传, 曹红.南华北盆地石炭-二叠系沉积环境与聚煤规律研究.海洋科学集刊, 2010, 50:133-137. DIAO Y J, WEI J C, CAO H. Sedimentary environment and coal accumulation of the Carboniferous and Permian in the Southern North China Basin. Studia Marina Sinica, 2010, 50:133-137.
[26] 孙自明.太康隆起构造演化史与勘探远景.石油勘探与开发, 1996, 23(5):6-10. SUN Z M. Tectonic evolution and petroleum exploration prospective of Taikang uplift. Petroleum Exploration and Development, 1996, 23(5):6-10.
[27] 赵勇, 刘予, 李瑞杰, 等.京西凹陷上古生界页岩气资源潜力分析.地质调查与研究, 2015, 38(4):284-290. ZHAO Y, LIU Y, LI R J, et al. An analysis of resource potential on Upper Paleozoic shale gas in depression of western Beijing. Geological Survey and Research, 2015, 38(4):284-290.
[28] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1918, 40(9):1361-1403.
[29] POLANYI M. The potential theory of adsorption. Science, 1963, 141(3585):1010-1013.
[30] AMANKWAH K A G, SCHWARZ J A. A modified approach for estimating pseudo-vapor pressure in the application of the Dubinin-Astakhov equation. Carbon, 1995, 33(9):1313-1319.
[31] DUBININ M M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemistry Review, 1960, 60(2):235-241.
[32] 崔永君, 李育辉, 张群, 等.煤吸附甲烷的特征曲线及其在煤层气储集研究中的作用.科学通报, 2005, 50(1):76-81. CUI Y J, LI Y H, ZHANG Q, et al. Characteristic curve of coalbed methane adsorption and its role in reservoir research of coalbed methane. Chinese Science Bulletin, 2005, 50(1):76-81.
[33] 顾惕人, 朱步瑶, 李外郎, 等. 表面化学. 北京:科学出版社, 2001:275-280. GU T R, ZHU B Y, LI W L, et al. Surface chemistry. Beijing:Science Press, 2001:275-280.
[34] 王庆, 宁正福, 张睿, 等.基于吸附势理论的页岩气藏吸附平衡预测.新疆石油地质, 2015, 36(3):308-312. WANG Q, NING Z F, ZHANG R, et al. Adsorption equilibrium prediction of shale gas pool based on adsorption potential theory. Xinjiang Petroleum Geology, 2015, 36(3):308-312.
[35] OZAWA S, KUSUMI S, OGINO Y. Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin-Astakhov adsorption equation. Journal of Colloid Interface Science, 1976, 56(1):83-91.
[36] 张群, 崔永君, 钟玲文, 等.煤吸附甲烷的温度-压力综合吸附模型.煤炭学报, 2008, 33(11):1272-1278. ZHANG Q, CUI Y J, ZHONG L W, et al. Temperature-pressure comprehensive adsorption model for coal adsorption of methane. Journal of China Coal Society, 2008, 33(11):1272-1278.
[37] 李沛, 马东民, 张辉, 等.高、低阶煤润湿性对甲烷吸附/解吸的影响.煤田地质与勘探, 2016, 44(5):80-85. LI P, MA D M, ZHANG H, et al. Influence of high and low rank coal wettability and methane adsorption/desorption characteristics. Coal Geology & Exploration, 2016, 44(5):80-85.
[38] 何彦庆, 郑丽, 闫长辉, 等.页岩储层标准等温吸附曲线的建立:以鄂尔多斯盆地长7页岩储层为例.岩性油气藏, 2018, 30(3):92-99. HE Y Q, ZHENG L, YAN C H, et al. Establishment of standard adsorption isotherms for shale reservoirs:a case of Chang 7 shale reservoir in Ordos Basin. Lithologic Reservoirs, 2018, 30(3):92-99.
[39] 李沛.大佛寺井田煤-水-甲烷作用研究.西安:西安科技大学, 2017. LI P. Study on coal-water-methane interaction in Dafosi mine field. Xi'an:Xi'an University of Science and Technology, 2017.
[40] 马东民, 李沛, 张辉, 等.长焰煤中镜煤与暗煤吸附/解吸特征对比.天然气地球科学, 2017, 28(6):852-862. MA D M, LI P, ZHANG H, et al. Comparison on characteristics of adsorption/desorption of vitrain and durain in long-flame coal. Natural Gas Geoscience, 2017, 28(6):852-862.
[41] 余川, 周洵, 方光建, 等.地层温压条件下页岩吸附性能变化特征:以渝东北地区龙马溪组为例.岩性油气藏, 2018, 30(6):10-17. YU C, ZHOU X, FANG G J, et al. Adsorptivity of shale under the formation temperature and pressure:a case of Longmaxi Formation in northeastern Chongqing. Lithologic Reservoirs, 2018, 30(6):10-17.
[42] LI P, MA D M, ZHANG J C, et al. Effect of wettability on adsorption and desorption of coalbed methane:a case study from low-rank coals in the southwestern Ordos Basin,China. Industrial & Engineering Chemistry Research, 2018, 57(35):12003-12015.
[43] 秦勇, 宋全友, 傅雪海.煤层气与常规油气共采可行性探讨:深部煤储层平衡水条件下的吸附效应. 天然气地球科学, 2005, 16(4):492-498. QIN Y, SONG Q Y, FU X H. Discussion on reliability for comining the coalbed gas and Normal petroleum and natural gas:Absorptive effect of deep Coal reservoir under condition of balanced water. Natural Gas Geoscience, 2005, 16(4):492-498.
[44] 邱庆伦, 李中明, 刘冲, 等.河南温县区块太原组-山西组页岩气成藏条件及勘探方向研究.非常规油气, 2018, 5(1):11-19. QIU Q L, LI Z M, LIU C, et al. Study on the accumulation conditions and exploration targets of shale gas of Taiyuan and Shanxi formations in Wenxian Block, Henan Province. Unconventional Oil & Gas, 2018, 5(1):11-19.
[45] 王心义, 聂新良, 赵卫东.开封凹陷区地温场特征及成因机制探析.煤田地质与勘探, 2001, 29(5):4-7. WANG X Y, NIE X L, ZHAO W D. Geothermal field's characteristics and forming mechanisms in Kaifeng Depression. Coal Geology & Exploration, 2001, 29(5):4-7.
[46] 沈俊超, 刘朝武, 张灵, 等.河南中牟凹陷地热地质背景与深层地热水开发.河南理工大学学报, 2014, 33(5):598-603. SHEN J C, LIU C W, ZHANG L, et al. Geothermal geological background and deep geothermal water development of Henan Zhongmu sag. Journal of Henan Polytechnic University(Natural Science), 2014, 33(5):598-603.
[47] 傅雪海, 秦勇, 叶建平, 等.中国部分煤储层解吸及甲烷采收率.煤田地质与勘探, 2002, 28(2):19-22. FU X H, QIN Y, YE J P, et al. Desorption properties of some coal reservoirs and methane recovery rate in china. Coal Geology & Exploration, 2002, 28(2):19-22.
[48] 刘刚, 赵谦平, 刘超, 等.延长油气区页岩气可采系数标定研究.岩性油气藏, 2018, 30(5):51-58. LIU G, ZHAO Q P, LIU C, et al. Recoverable coefficient calibration of shale gas in Yanchang Oilfield, Ordos Basin. Lithologic Reservoirs, 2018, 30(5):51-58.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[3] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[4] 何绪全, 黄东, 赵艾琳, 李育聪. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏, 2021, 33(3): 129-137.
[5] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[6] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[7] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[8] 薛培, 张丽霞, 梁全胜, 师毅. 基于逸度与压力计算页岩吸附甲烷的等量吸附热差异分析——以延长探区延长组页岩为例[J]. 岩性油气藏, 2021, 33(2): 171-179.
[9] 杜金玲, 林鹤, 纪拥军, 江洪, 许文莉, 伍顺伟. 地震与微地震融合技术在页岩油压后评估中的应用[J]. 岩性油气藏, 2021, 33(2): 127-134.
[10] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[11] 梁志凯, 李卓, 李连霞, 姜振学, 刘冬冬, 高凤琳, 刘晓庆, 肖磊, 杨有东. 松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏, 2020, 32(6): 22-35.
[12] 刘博, 徐刚, 纪拥军, 魏路路, 梁雪莉, 何金玉. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
[13] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[14] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[15] 郭娟, 赵迪斐, 梁孝柏, 杨坤, 李昊轩, 龙代玺. 页岩纳米孔隙的结构量化表征——以川东南地区五峰组为例[J]. 岩性油气藏, 2020, 32(5): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .