岩性油气藏 ›› 2020, Vol. 32 ›› Issue (2): 100–107.doi: 10.12108/yxyqc.20200210

• 勘探技术 • 上一篇    下一篇

致密砂岩储层电性特征分析

侯振学1, 陈朕2, 牛全兵3, 宋光建2, 刘延斌4   

  1. 1. 中海油田服务股份有限公司 油田技术事业部, 河北 廊坊 065201;
    2. 中国石油新疆油田公司 风城油田作业区, 新疆 克拉玛依 834000;
    3. 中国石油青海油田分公司 勘探开发研究院, 甘肃 敦煌 736200;
    4. 中国石油新疆油田公司 准东采油厂, 新疆 阜康 831511
  • 收稿日期:2019-03-26 修回日期:2019-06-27 出版日期:2020-03-21 发布日期:2020-01-19
  • 作者简介:侯振学(1986-),男,硕士,工程师,主要从事非常规储层测井解释与评价方面的工作。地址:(065201)河北省廊坊市三河市燕郊开发区行宫西大街中海油基地。Email:houzhenxue@qq.com。

Analysis of electrical characteristics of tight sandstone reservoirs

HOU Zhenxue1, CHEN Zhen2, NIU Quanbing3, SONG Guangjian2, LIU Yanbin4   

  1. 1. Well Tech of China Oilfield Services Limited, Langfang 065201, Hebei, China;
    2. Fengcheng Oilfield Operating Area, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    3. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736200, Gansu, China;
    4. Zhundong Oil Production Plant, PetroChina Xinjiang Oilfield Company, Fukang 831511, Xinjiang, China
  • Received:2019-03-26 Revised:2019-06-27 Online:2020-03-21 Published:2020-01-19

摘要: 为了弄清致密砂岩储层复杂的电性特征,以高分辨率阵列感应资料为基础,结合核磁测井、岩心微观分析资料及试气成果,对鄂尔多斯盆地东缘L区块二叠系上石盒子组致密砂岩储层的电性特征进行了分析,找出了导致电阻率值存在差异以及储层具有不同侵入特征的原因。研究表明:致密砂岩储层流体性质并不是电阻率值存在差异的主控因素,低电阻率主要是孔喉边缘黏土矿物的束缚水与可联通孔隙喉道内的毛管水共同导电造成的,中—高电阻率与孤立孔隙无法导电有关;侵入特征与含气性及喉道的沟通能力有关,低电阻率负差异储层是含气性与优质孔隙结构的指示,低电阻率无差异为片状喉道导致的不动水导电和毛管阻力及黏土矿物阻止钻井液侵入有关,中—高电阻率无差异与孤立孔隙无法导电及无法侵入有关。导致地层出现这种电性特征是沉积作用、成岩作用及后期成藏的共同影响的。该研究成果对指导研究区致密储层的勘探开发具有重要意义。

关键词: 电性特征, 致密砂岩, 阵列感应电阻率, 上石盒子组, 鄂尔多斯盆地

Abstract: In order to clarify the complex electrical characteristics of tight sandstone reservoirs,the electrical characteristics of tight sandstone reservoirs of Permian upper Shihezi Formation in L block in the eastern margin of Ordos Basin were analyzed based on high resolution array induction data,combined with nuclear magnetic logging,core micro-analysis data and gas testing results,and the causes of resistivity differences and different intrusion characteristics were found out. The results show that fluid property of tight sandstone reservoir is not the dominant factor for the difference of resistivity. The low resistivity is mainly caused by co-conductivity of bound water caused by clay minerals at the edge of pore throat and capillary water in the connectable pore throat. The medium and high resistivity is mainly related to the non-conductivity of isolated pore. The invasion characteristics are mainly related to gas-bearing property and the communication ability of throat. Low resistivity negative difference reservoir is indicator of gas-bearing property and high-quality pore structure. No difference in low resistivity is related to the immovable water conductivity caused by flaky throat,capillary resistance and clay minerals preventing drilling fluid invasion. No difference between medium and high resistivity is related to the inability of conduction and invasion of isolated pore. It is the common influence of sedimentation,diagenesis and later accumulation that leads to the formation of such electrical characteristics. The research results are of great significance for guiding exploration and development of tight reservoirs in the study area.

Key words: electrical characteristics, tight sandstone, array induction resistivity, upper Shihezi Formation, Ordos Basin

中图分类号: 

  • TE132.2
[1] 王国亭, 贾爱林, 闫海军, 等.苏里格致密砂岩气田潜力储层特征及可动用性评价.石油与天然气地质, 2017, 38(5):896-904. WANG G T, JIA A L, YAN H J, et al. Characteristics and recoverability evaluation on the potential reservoir in Sulige tight sandstone gas field. Oil & Gas Geology, 2017, 38(5):896-904.
[2] 张渝悦, 张威.鄂尔多斯盆地杭锦旗探区二叠系下石盒子组盒1段致密砂岩气层测井评价方法. 沉积与特提斯地质, 2016, 36(4):53-59. ZHANG Y Y, ZHANG W. Well logging assessment of tight sandstone gas reservoirs from the He-1 member of the Permian Lower Shihezi Formation in the Hangjinqi exploration area,Ordos Basin. Sedimentary Geology and Tethyan Geology, 2016, 36(4):53-59.
[3] 王迪, 戚家振, 陈现, 等.东海N气田低阻气层成因分析及饱和度定量评价.复杂油气藏, 2017, 10(4):7-13. WANG D, QI J Z, CHEN X, et al. Forming reason analysis and saturation quantitative evaluation of low-resistivity gas layer in N Gas field of Donghai Sea. Complex Hydrocarbon Reservoirs, 2017, 10(4):7-13.
[4] 赵军龙, 李甘, 朱广社, 等.低阻油层成因机理及测井评价方法综述.地球物理学进展, 2011, 26(4):1334-1342. ZHAO J L, LI G, ZHU G S, et al. Review of logging evaluating method and contributing factor or mechanism on low resistivity reservoirs. Progress in Geophysics, 2011, 26(4):1334-1342.
[5] 杨锐祥, 王向公, 白松涛, 等.Oriente盆地海相低阻油层成因机理及测井评价方法.岩性油气藏, 2017, 29(6):84-90. YANG R X, WANG X G, BAI S T, et al. Formation mechanism and log evaluation methods of marine low resistivity reservoir in Oriente Basin. Lithologic Reservoirs, 2017, 29(6):84-90.
[6] 雍世和, 张超谟.测井数据处理与综合解释.东营:中国石油大学出版社, 2007:262-270. YONG S H, ZHANG C M. Logging data processing and comprehensive interpretation. Dongying:China University of Petroleum Press, 2007:262-270.
[7] 牛鑫磊, 曹代勇, 徐浩, 等.海陆过渡相煤系致密砂岩储层特征及影响因素.煤炭科学技术, 2018, 46(4):188-195. NIU X L, CAO D Y, XU H, et al. Characteristics and control factors of tight sandstone reservoirs in marine-continental transitional coal measures. Coal Science and Technology, 2018, 46(4):188-195.
[8] 杨仁超, 王秀平, 樊爱萍, 等.苏里格气田东二区砂岩成岩作用与致密储层成因.沉积学报, 2012, 30(1):111-119. YANG R C, WANG X P, FAN A P, et al. Diagenesis of sand-stone and genesis of compact reservoirs in the eastⅡpart of Sulige Gas Field, Ordos Basin. Acta Sedimentologica Sinica, 2012, 30(1):111-119.
[9] 谢英刚, 秦勇, 叶建平, 等.临县地区上古生界煤系致密砂岩气成藏条件分析.煤炭学报, 2016, 41(1):181-191. XIE Y G, QIN Y, YE J P, et al. Accumulation conditions of tight gas in the Upper Paleozoic of Linxing block. Journal of China Coal Society, 2016, 41(1):181-191.
[10] 刘成林, 朱筱敏, 曾庆猛.苏里格气田储层成岩序列与孔隙演化.天然气工业, 2005, 25(11):1-3. LIU C L, ZHU X M, ZENG Q M. Reservoir diagenetic sequence and por evolution of Sulige Gas Field in Ordos Basin. Natural Gas Industry, 2005, 25(11):1-3.
[11] 彭真, 秦臻, 潘和平, 等.杭锦旗地区低阻气层成因及测井评价方法.天然气地球科学, 2016, 27(11):2054-2063. PENG Z, QIN Z, PAN H P, et al. Low-resistivity gas reservoir genesis and log evaluation method in Hangjinqi area. Natural Gas Geoscience, 2016, 27(11):2054-2063.
[12] 郭冀宁, 韩艺, 陈烈, 等.鄂尔多斯盆地L地区致密低阻气层成因研究.中国锰业, 2017, 35(1):19-21. GUO J N, HAN Y, CHEN L, et al. A research on genesis of low resistivity of tight gas reservoir in L area of Ordos Basin. China's Manganese Industry. 2017, 35(1):19-21.
[13] 段新国, 衡勇, 王洪辉, 等.苏里格气田南区上古气藏低阻气层形成机理.成都理工大学学报(自然科学版), 2015, 42(4):427-434. DUAN X G, HENG Y, WANG H H, et al. Genetic mechanism of Upper Paleozoic low-resistivity gas reservoirs in south of Sulige Gas Field,Ordos Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 2015, 42(4):427-434.
[14] 窦伟坦, 刘新社, 王涛.鄂尔多斯盆地苏里格气田地层水成因及气水分布规律.石油学报, 2010, 31(5):767-772. DOU W T, LIU X S, WANG T. The origin of formation water and the regularity of gas and water distribution for the Sulige Gas Field,Ordos Basin. Acta Petrolei Sinica, 2010, 31(5):767-772.
[15] 姚泾利, 王怀厂, 裴戈, 等.鄂尔多斯盆地东部上古生界致密砂岩超低含水饱和度气藏形成机理. 天然气工业, 2014, 34(1):37-43. YAO J L, WANG H C, PEI G, et al. The formation mechanism of Upper Paleozoic tight sand gas reservoirs with ultra-low water saturation in eastern Ordos Basin. Natural Gas Industry, 2014, 34(1):37-43.
[16] 叶礼友, 高树生, 杨洪志, 等.致密砂岩气藏产水机理与开发对策.天然气工业, 2015, 35(2):41-45. YE L Y, GAO S S, YANG H Z, et al. Water production mechanism and development strategy of tight sandstone gas reservoirs. Natural Gas Industry, 2015, 35(2):41-45.
[17] 李长喜, 李潮流, 周灿灿, 等.淡水钻井液侵入对双感应和双侧向测井响应的影响. 石油勘探与开发, 2007, 34(5):603-608. LI C X, LI C L, ZHOU C C, et al. Effects of fresh drilling mud invasion on logging responses of dual induction and dual lateral to reservoirs. Petroleum Exploration and Development, 2007, 34(5):603-608.
[18] 高楚桥, 毛志强, 李进福.岩石导电效率及其与含水饱和度之间的关系.石油物探, 1998, 37(3):130-136. GAO C Q, MAO Z Q, LI J F. The electrical efficiency of rocks and its relationship with water saturation. Geophysical Prospecting for Petroleum, 1998, 37(3):130-136.
[19] 薛辉, 窦连彬, 吕亚辉, 等.钻井液侵入对阵列感应电阻率的影响及电阻率特征分析. 天然气勘探与开发, 2016, 39(2):25-30. XUE H, DOU L B, LYU Y H, et al. Effect of mud invasion on array-induction resistivity logging and resistivity characteristics. Natural Gas Exploration & Development, 2016, 39(2):25-30.
[20] 张莉, 孙宏智, 张美玲, 等.应用阵列感应资料对复杂侵入现象的解释.大庆石油地质与开发, 2005, 24(4):99-100. ZHANG L, SUN H Z, ZHANG M L, et al. Interpretation of complex intrusion phenomena using array induction data. Petroleum Geology and Development in Daqing, 2005, 24(4):99-100.
[21] 王海燕, 孙维昭, 张智, 等.鄂尔多斯盆地临兴地区上石盒子组致密砂岩储层特征及优质储层形成机制.桂林理工大学学报, 2018, 38(3):392-400. WANG H Y, SUN W Z, ZHANG Z, et al. Characteristics of tight sandstone reservoir and formation mechanism of high quality reservoir from the Upper Shihezi formation in Linxing area,Ordos Basin. Journal of Guilin University of Technology, 2018, 38(3):392-400.
[22] 张晓峰, 侯明才, 陈安清.鄂尔多斯盆地东北部下石盒子组致密砂岩储层特征及主控因素.天然气工业, 2010, 30(11):34-38. ZHANG X F, HOU M C, CHEN A Q. Characteristics and main controlling factors of tight sandstone reservoirs of lower Shihezi Formation in northeastern Ordos Basin. Natural Gas Industry, 2010, 30(11):34-38.
[23] 马超.定北地区下石盒子组盒1段致密砂岩储层特征及影响因素.岩性油气藏, 2015, 27(1):89-93. MA C. Tight sandstone reservoir characteristics and influencing factors of He-1 member of the lower Shihezi Formation in Dingbei area. Lithologic Reservoirs, 2015, 27(1):89-93.
[24] 刘喜杰, 马遵敬, 韩冬, 等.鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素. 天然气地球科学, 2018, 29(4):481-490. LIU X J, MA Z J, HAN D, et al. Research on the main factors of high quality tight sandstone reservoir in Linxing block, Ordos Basin. Natural Gas Geoscience, 2018, 29(4):481-490.
[25] 呼延钰莹, 姜福杰, 庞雄奇, 等.鄂尔多斯盆地东缘康宁地区二叠系致密储层成岩作用与孔隙度演化.岩性油气藏, 2019, 31(2):56-65. HUYAN Y Y, JIANG F J, PANG X Q, et al. Diagenesis and porosity evolution of Permian tight reservoirs in Kangning area, eastern margin of Ordos Basin. Lithologic Reservoirs, 2019, 31(2):56-65.
[26] 乔博, 夏守春, 艾庆琳, 等.鄂尔多斯盆地上古生界致密砂岩气成藏特征.科学技术与工程, 2018, 18(13):42-49. QIAO B, XIA S C, AI Q L, et al. Accumulation character of the upper Paleozoic tight sandstone gas in ordos Basin. Science Technology and Engineering, 2018, 18(13):42-49.
[1] 张文凯, 施泽进, 田亚铭, 王勇, 胡修权, 李文杰. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏, 2021, 33(4): 10-19.
[2] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[3] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[4] 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112.
[5] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[6] 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[7] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[8] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[9] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[10] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[11] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[12] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
[13] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[14] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
[15] 何维领, 罗顺社, 李昱东, 吴悠, 吕奇奇, 席明利. 斜坡背景下沉积物变形构造时空展布规律——以鄂尔多斯盆地镇原地区长7油层组为例[J]. 岩性油气藏, 2020, 32(6): 62-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .