岩性油气藏 ›› 2024, Vol. 36 ›› Issue (2): 1522.doi: 10.12108/yxyqc.20240202
熊波, 朱冬雪, 方朝合, 王社教, 杜广林, 薛亚斐, 莫邵元, 辛福东
XIONG Bo, ZHU Dongxue, FANG Chaohe, WANG Shejiao, DU Guanglin, XUE Yafei, MO Shaoyuan, XIN Fudong
摘要: 通过搭建热泵测试试验台,进行多工况试验获取试验数据来建立BP神经网络同轴套管换热量预测模型,并进行仿真模拟,对同轴套管换热量进行预测。结果表明:①热泵系统在水流量28 m3/h、回水温度10℃的工况下稳定运行能效最高,同轴套管有效换热量为563kW。②隐含层节点数为12时,BP神经网络预测模型最优,训练最大均方误差MSE为0.023%,最优模型基本结构为9-12-1。③对比同轴套管换热量预测值与检验值仿真结果,BP神经网络同轴套管换热量预测平均百分比误差MAPE为0.235%,预测准确率为99.765%。该预测模型具有较高的精度和可靠性,能够准确预测同轴套管换热量的变化趋势,对于提高热泵系统的能效和性能具有广泛的应用价值。
中图分类号:
[1] FANG L,DIAO N R,SHAO Z K,et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings,2018,167:79-88. [2] SPITTLER N,SHAFIEI E,DAVIDSDOTTIR B,et al. Modelling geothermal resource utilization by incorporating resource dynamics,capacity expansion,and development costs[J]. Energy, 2019,190:116407. [3] GAO Yuefen,GAO Tingting,LIU Zhao. Study on the heat transfer performance of boiling in vertical buried tube of direct expansion ground source heat pump[J]. Energy Procedia,2019, 158:5494-5503. [4] DEBASREE R,CHAKRABORTY T,BASU D,et al. Feasibility and performance of ground source heat pump systems for commercial applications in tropical and subtropical climates[J]. Renewable Energy,2020,152:467-483. [5] LE LOUS M,LARROQUE F,DUPUY A,et al. Thermal performance of a deep borehole heat exchanger:Insights from a synthetic coupled heat and flow model[J]. Geothermics,2015, 57:157-172. [6] KERME E D,FUNG A S. Transient heat transfer simulation, analysis and thermal performance study of double U-tube borehole heat exchanger based on numerical heat transfer model[J]. Applied Thermal Engineering,2020,173:115189. [7] KUMAR S,MURUGESAN K. Optimization of geothermal interaction of a double U-tube borehole heat exchanger for space heating and cooling applications using Taguchi method and utility concept[J]. Geothermics,2020,83:101723. [8] 王科荀,姚海清,赵树旺,等.地埋管换热器传热模拟与优化研究进展[J].区域供热,2022(5):92-105. WANG Kexun,YAO Haiqing,ZHAO Shuwang,et al. Advance in heat transfer simulation and optimization of ground heat exchanger[J]. District Heating,2022(5):92-105. [9] MORCHIO S,FOSSA M. Thermal modeling of deep borehole heat exchangers for geothermal applications in densely populated urban areas[J]. Thermal Science and Engineering Progress,2019, 13:100363. [10] LUO Yongqiang,GUO Hongshan,MEGGERS F,et al. Deep coaxial borehole heat exchanger:Analytical modeling and thermal analysis[J]. Energy,2019,185:1298-1313. [11] CAI Wanlong,WANG Fenghao,LIU Jun,et al. Experimental and numerical investigation of heat transfer performance and sustainability of deep borehole heat exchangers coupled with ground source heat pump systems[J]. Applied Thermal Engineering,2019,149:975-986. [12] HUANG Yibin,ZHANG Yanjun,XIE Yangyang,et al. Thermal performance analysis on the composition attributes of deep coaxial borehole heat exchanger for building heating[J]. Energy and Buildings,2020,221:110019. [13] SONG Xianzhi,WANG Gaosheng,SHI Yu,et al. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy,2018,164:1298-1310. [14] WANG Z H,WANG F H,LIU J,et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system[J]. Energy,2019,155:578-289. [15] LI Ji,XU Wei,LI Jianfeng,et al. Heat extraction model and characteristics of coaxial deep borehole heat exchanger[J]. Renewable Energy,2021,169:738-751. [16] 马娟,董娟,刘勇,等.紧邻的双井中深层套管式地埋管换热器换热特性研究[J].可再生能源,2022,40(12):1604-1612. MA Juan,DONG Juan,LIU Yong,et al. Study on heat transfer characteristics of deep casing buried pipe heat exchanger in adjacent double wells[J]. Renewable Energy Resources,2022,40(12):1604-1612. [17] 徐中波,汪利兵,申春生,等.渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J].岩性油气藏,2023,35(5):100-107. XU Zhongbo,WANG Libing,SHEN Chunsheng,et al. Architecture characterization of meandering river reservoirs of lower Minghuazhen Formation of Neogene in Penglai 19-3 oilfield, Bohai Sea[J]. Lithologic Reservoirs,2023,35(5):100-107. [18] 董江涛,杜震宇.基于GA-BP神经网络的土壤-空气换热器换热量预测分析[J].可再生能源,2021,39(3):307-314. DONG Jiangtao,DU Zhenyu. Heat exchange quantity prediction of earth-air heat exchanger based on GA-BP neural network[J]. Renewable Energy Resources,2021,39(3):307-314. [19] 杨建,杨程博,张岩,等.基于改进神经网络的渗透率预测方法[J].岩性油气藏,2011,23(1):98-102. YANG Jian,YANG Chengbo,ZHANG Yan,et al. Permeability prediction method based on improved BP neural network[J]. Lithologic Reservoirs,2011,23(1):98-102. [20] 陈尚沅,茅靳丰,韩旭.基于神经网络的垂直地埋管换热量预测[J].太阳能学报,2017,38(11):3077-3084. CHEN Shangyuan,MAO Jinfeng,HAN Xu. Thermal prediction of a vertical ground heat exchanger using artificial neural networks[J]. Acta Energiae Solaris Sinica,2017,38(11):3077-3084. [21] 王晓光.自适应BP神经网络在横波速度预测中的应用[J].岩性油气藏,2013,25(5):86-88. WANG Xiaoguang. Application of self-adaptive BP neural network to the prediction of shear wave velocity[J]. Lithologic Reservoirs,2013,25(5):86-88 [22] 朱冬雪,鹿世化,张帆,等. BP算法预测控制在供热系统中的节能应用[J].建筑热能通风空调,2020,39(4):50-52. ZHU Dongxue,LU Shihua,ZHANG Fan,et al. Energy-saving application of BP algorithm predictive control in heating system[J]. Building Energy & Environment,2020,39(4):50-52. [23] 韩长城,林承焰,马存飞.地震多属性优选技术在碳酸盐岩缝洞型储层预测中的应用[J].岩性油气藏,2013,25(6):67-70. HAN Changcheng,LIN Chengyan,MA Cunfei. Application of seismic multi-attribute optimization technique to the prediction of carbonate fractured-vuggy reservoir[J]. Lithologic Reservoirs, 2013,25(6):67-70. [24] 朱冬雪.基于BP神经网络的集中供热系统二次管网节能控制研究[D].南京:南京师范大学,2020. ZHU Dongxue. District heating system based on BP neural network is the secondary pipe network energy saving control research[D]. Nanjing:Nanjing Normal University,2020. [25] 何婧涵. 基于优化BP神经网络的短期热负荷预测研究[D]. 天津:天津大学,2022. HE Jinghan. Based on optimized BP neural networkshort-term thermal load forecasting[D]. Tianjin:Tianjin University,2022. [26] 蒋德鑫,姜正龙,张贺,等.烃源岩总有机碳含量测井预测模型探讨:以陆丰凹陷文昌组为例[J]. 岩性油气藏,2019,31(6):109-117. JIANG Dexin,JIANG Zhenglong,ZHANG He,et al. Well logging prediction models of TOC content in source rocks:A case of Wenchang Formation in Lufeng Sag[J]. Lithologic Reservoirs,2019,31(6):109-117. [27] GU Jihao,WANG Jin,QI Chengying,et al. Medium-term heat load prediction for an existing residential building based on a wireless on-off control system[J]. Energy,2018,152:709-718. [28] 熊镭,张超谟,张冲,等. A地区页岩气储层总有机碳含量测井评价方法研究[J].岩性油气藏,2014,26(3):74-78. XIONG Lei,ZHANG Chaomo,ZHANG Chong,et al. Research on logging evaluation method of TOC content of shale gas reservoir in A area[J]. Lithologic Reservoirs,2014,26(3):74-78. [29] XUE Puning,JIANG Yi,ZHOU Zhigang,et al. Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms[J]. Energy,2019,188:1-15. [30] 杨占伟,姜振学,梁志凯,等.基于2种机器学习方法的页岩TOC含量评价:以川南五峰组-龙马溪组为例[J].岩性油气藏,2022,34(1):130-138. YANG Zhanwei,JIANG Zhenxue,LIANG Zhikai,et al. Evaluation of shale TOC content based on two machine learning methods:A case study of Wufeng-Longmaxi Formation in southern Sichuan Basin[J]. Lithologic Reservoirs,2002,34(1):130-138. [31] 石惠娴,孟祥真,游煜成,等.植物工厂地源热泵系统热负荷BP神经网络预测及验证[J]. 农业工程学报,2019,35(2):196-202. SHI Huixian,MENG Xiangzhen,YOU Yucheng,et al. Prediction and verification of heating load of ground source heat pump heating system based on BP neural network for plant factory[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(2):196-202. [32] 刘跃杰,刘书强,马强,等. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用[J]. 岩性油气藏,2019,31(4):101-111. LIU Yuejie,LIU Shuqiang,MA Qiang,et al. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin[J]. Lithologic Reservoirs,2019,31(4):101-111. |
[1] | 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138. |
[2] | 李紫晗, 何玉发, 张滨海, 钟海全. 深水气井测试温压场耦合模型求解及实现[J]. 岩性油气藏, 2020, 32(4): 163-171. |
[3] | 蒋德鑫, 姜正龙, 张贺, 杨舒越. 烃源岩总有机碳含量测井预测模型探讨——以陆丰凹陷文昌组为例[J]. 岩性油气藏, 2019, 31(6): 109-117. |
[4] | 刘跃杰, 刘书强, 马强, 姚宗森, 佘家朝. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用[J]. 岩性油气藏, 2019, 31(4): 101-111. |
[5] | 陈可洋. 高精度地震纯波震源数值模拟[J]. 岩性油气藏, 2012, 24(1): 84-91. |
|