岩性油气藏 ›› 2025, Vol. 37 ›› Issue (4): 84–94.doi: 10.12108/yxyqc.20250408

• 地质勘探 • 上一篇    

塔里木盆地顺北油田4号断裂带断控体凝析气藏剩余气分布规律

江山1,2, 唐永建1,2, 焦霞蓉3, 李文亮4, 黄成4, 王泽5   

  1. 1. 长江大学 中国南方复杂页岩油气地质与开发重点实验室, 武汉 430100;
    2. 长江大学 非常规油气地质工程研究中心, 武汉 430100;
    3. 湖北省地质局 水文地质工程地质大队, 湖北 荆州 434020;
    4. 中国石化西北油田分公司 第四采油厂, 乌鲁木齐 830011;
    5. 中国石油集团 川庆钻探工程有限公司, 成都 610083
  • 收稿日期:2025-04-07 修回日期:2025-05-19 发布日期:2025-07-05
  • 第一作者:江山(1980-),男,博士,副教授,主要从事开发地质及储层表征方面的研究工作。地址:(430100)湖北省武汉市蔡甸区大学路111号长江大学。Email:500053@yangtzeu.edu.cn。
  • 通信作者: 唐永建(1996-),男,硕士,研究方向为油藏工程和开发地质。Email:tomas.tyj@qq.com。
  • 基金资助:
    国家自然科学基金项目“碳酸盐岩油气藏多物理场耦合系统建模与最优控制研究”(编号:62273060)资助。

Distribution law of remaining gas in condensate gas reservoirs in fault-controlled body of No. 4 fault zone in Shunbei Oilfield, Tarim Basin

JIANG Shan1,2, TANG Yongjian1,2, JIAO Xiarong3, LI Wenliang4, HUANG Cheng4, WANG Ze5   

  1. 1. Key Laboratory of Complex Shale Oil and Gas Geology and Development in Southern China, Yangtze University, Wuhan 430100, China;
    2. Unconventional Oil and Gas Geological Engineering Research Center, Yangtze University, Wuhan 430100, China;
    3. Hydrogeological Engineering Geology Brigade, Hubei Geological Bureau, Jingzhou 434020, Hubei, China;
    4. The Fourth Oil Production Plant of Sinopec Group Northwest Petroleum Branch, Urumqi 830011, China;
    5. CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610083, China
  • Received:2025-04-07 Revised:2025-05-19 Published:2025-07-05

摘要: 塔里木盆地顺北油田4号断裂带奥陶系断控体碳酸盐岩凝析气藏采出程度低,地层压力下降快。采用数值模拟方法研究了顺北油田4号断裂带奥陶系凝析气藏剩余气分布特征及主控因素,并总结了凝析气藏剩余气分布模式。研究结果表明:①顺北油田发育各种各样的小尺度走滑断裂带,走滑断裂形成了断控型储层,埋深较大,有效储集空间以断层空腔、裂缝等为主。断控体储层沿走滑断裂带呈条带状分布,垂直断裂带方向发育由基岩-裂缝带-洞穴带-裂缝带-基岩带有序排列构成的多组缝洞集合体,即栅簇结构。②研究区利用单井开发的储集体剩余气具有零星分布特征:当储集体2个断裂面不连通时,一块断裂面凝析气被动用,另一块断裂面则形成剩余气;当储集体为多个孤立的断控体时,剩余气呈块状分布;当储集体受底水影响强烈时,剩余气被底水封堵,分布于储集体顶部。多井开发的储集体剩余气具有成片分布特征:当储集体存在明显气驱高速通道时,通道侧缘存在大量滞留型剩余气;当注采井之间连通性较好时,注入气呈活塞式推进,剩余气连片分布于生产井周围。单井开发的剩余气分布主要受地质因素及水动力控制,多井开发的剩余气分布则主要受注采条件及地质因素控制。③研究区断控型凝析气藏剩余气分布具有两大类7种模式,分别为单井类的孤立型、构造控制型、致密封堵型、底水封堵型和多井类的孤立型、气驱通道附近滞留型、注采控制型。

关键词: 数值模拟, 凝析气藏, 剩余气, 断控体, 奥陶系, 顺北油田, 塔里木盆地

Abstract: Carbonate condensate gas reservoirs in Ordovician fault-controlled bodies of No. 4 fault zone in Shunbei Oilfield of Tarim Basin are with low recovery efficiency and rapid decline in formation pressure. The characteristics of remaining gas distribution and main controlling factors of Ordovician condensate gas reservoirs in No. 4 fault zone of Shunbei Oilfield were studied by numerical simulation methods, and the remaining gas distribution patterns of condensate gas reservoirs were summarized. The results show that: (1)Shunbei Oilfield has developed various small-scale strike-slip fault zones, which have formed fault-controlled reservoirs with relatively large burial depths. The effective storage space is mainly composed of fault cavities and fractures. Fault-controlled reservoirs are distributed in strip along the strike-slip fault zone, and develop multiple sets of fracture-cavity assemblages consisting of an orderly arranged of bedrock-fracture zone-cave zone-fracture zone-bedrock zone in the direction vertical to the fault zone,known as grid cluster structure.(2)The remaining gas in the reservoirs developed by a single well in the study area has sporadically distributed. When two fault surfaces of the reservoirs are not connected,the condensate gas from one fault surface is utilized while the other surface forms remaining gas. When the reservoirs consist of multiple isolated fault-controlled bodies, the remaining gas distribute in blocks.When the reservoirs are strongly affected by bottom water, the remaining gas is sealed off by the bottom water and distribute at the top of the reservoir. The remaining gas in the reservoirs developed by multi-well has the distribution characteristic of being patchy.When there are obvious high-speed gas drive channels within the reservoir, there is a large amount of trapped remaining gas along the channel edges.When the connectivity between injection and production wells is good, the injected gas advances in a piston manner, with remaining gas distributed around the production wells in sheet shape. The distribution of remaining gas from single well development is mainly controlled by geological factors and hydrodynamic conditions, while that from multi-well development is primarily influenced by injection and production conditions as well as geological factors.(3)The distribution of remaining gas in fault-controlled condensate gas reservoirs in the study area is characterized by seven models,which are isolated type,structural control type,sealing plugging type, bottom water plugging type of single wells, and isolated type, trapped near gas drive channels type, and injection-production control type of multi-well.

Key words: numerical simulation, condensate gas reservoir, remaining gas, fault-controlled body, Ordovician, Shunbei Oilfield, Tarim Basin

中图分类号: 

  • TE344
[1] 胡文革.塔里木盆地顺北地区不同断裂带油气充注能力表征研究与实践[J].石油与天然气地质,2022,43(3):528-541.HU Wenge.Study and practice of characterizing hydrocarbon charging capacity of different fault zones,Shunbei area,Tarim Basin[J].Oil & Gas Geology,2022,43(3):528-541.
[2] 计秉玉,郑松青,顾浩.缝洞型碳酸盐岩油藏开发技术的认识与思考:以塔河油田和顺北油田为例[J].石油与天然气地质,2022,43(6):1459-1465.JI Bingyu,ZHENG Songqing,GU Hao.On the development technology of fractured-vuggy carbonate reservoirs:A case study on Tahe oilfield and Shunbei oil and gas field[J].Oil & Gas Geology,2022,43(6):1459-1465.
[3] 宋传真,马翠玉.塔河油田奥陶系缝洞型油藏油水流动规律[J].岩性油气藏,2022,34(4):150-158.SONG Chuanzhen,MA Cuiyu.Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield[J].Lithologic Reservoirs,2022,34(4):150-158.
[4] 刘彪,潘丽娟,王沫.顺北油气田二区断控体油气藏井身结构设计及配套技术[J].断块油气田,2023,30(4):692-697.LIU Biao,PAN Lijuan,WANG Mo.Well structure design and supporting technology for fault-controlled reservoirs of No.2 Block in Shunbei oil-gas field[J].Fault-Block Oil & Gas Field,2023,30(4):692-697.
[5] 苏皓,郭艳东,曹立迎,等.顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J].岩性油气藏,2024,36(5):178-188.SU Hao,GUO Yandong,CAO Liying,et al.Natural depletion characteristics and pressure maintenance strategies of faul-tcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield[J].Lithologic Reservoirs,2024,36(5):178-188.
[6] ZAREMOAYEDI F,GHAEDI M,KAZEMI N.A new approach to production data analysis of non-volumetric naturally fractured gas condensate reservoirs[J].Journal of Natural Gas Science and Engineering,2022,105:104703.
[7] 李映涛,邓尚,张继标.深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式:以塔里木盆地顺北4号断裂带为例[J].地学前缘,2023,30(6):80-94.LI Yingtao,DENG Shang,ZHANG Jibiao.Fault zone architecture of strike-slip faults in deep,tight carbonates and development of reservoir clusters under fault control:A case study in Shunbei,Tarim Basin[J].Earth Science Frontiers,2023,30(6):80-94.
[8] 陈叔阳,何云峰,王立鑫,等.塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J].岩性油气藏,2024,36(2):124-135.CHEN Shuyang,HE Yunfeng,WANG Lixin,et al.Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No.1 fault zone,Tarim Basin[J].Lithologic Reservoirs,2024,36(2):124-135.
[9] 杨昕睿,尹艳树,王立鑫,等.塔里木盆地A地区奥陶系断控体内幕精细表征[J].油气地质与采收率,2023,30(6):45-53.YANG Xinrui,YIN Yanshu,WANG Lixin,et al.Fine characterization of Ordovician inner fault-controlled bodies in area A of Tarim Basin[J].Petroleum Geology and Recovery Efficiency,2023,30(6):45-53.
[10] 朱秀香,赵锐,赵腾.塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J].岩性油气藏,2023,35(5):131-138.ZHU Xiuxiang,ZHAO Rui,ZHAO Teng.Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No.1 fault zone,Tarim Basin[J].Lithologic Reservoirs,2023,35(5):131-138.
[11] 孙贺东,李世银,刘志良,等.缝洞型碳酸盐岩凝析气藏提高采收率关键技术[J].天然气工业,2023,43(1):113-121.SUN Hedong,LI Shiyin,LIU Zhiliang,et al.EOR technologies for fractured-vuggy carbonate condensate gas reservoirs[J].Natural Gas Industry,2023,43(1):113-121.
[12] 韩剑发,苏洲,陈利新,等.塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J].石油学报,2019,40(11):1296-1310.HAN Jianfa,SU Zhou,CHEN Lixin,et al.Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J].Acta Petrolei Sinica,2019,40(11):1296-1310.
[13] JKRIAZHEV A V,KRIAZHEV A Y,GILMANOV Y A.Methodology for selecting the mode of development of oil and gas condensate deposit using hydrodynamic simulation[J].Bulletin of the Tomsk Polytechnic University-Geo Assets Engineering,2022,333(9):137-147.
[14] VAGANOV E V,INYAKIN V V,KRASNOV I I,et al.Results of the study of the productive characteristics of wells in the development of gas condensate deposits[J].IOP Conference Series:Earth and Environmental Science,2022,988(3):032029.
[15] LATHBL M A,HAKIMI M H,HAQUE A E,et al.Organic geochemistry and 1 D-basin modeling in the Taranaki Basin,NEW Zealand:Implications for deltaic-source rocks of the Cenozoic oil and condensate reservoirs[J].Marine and Petroleum Geology,2024,170:107146.
[16] 王昔彬,刘传喜,郑祥克,等.低渗特低渗气藏剩余气分布的描述[J].石油与天然气地质,2003,24(4):401-403.WANG Xibin,LIU Chuanxi,ZHENG Xiangke,et al.Quantitative description of remaining gas distribution in low and extremelylow permeability gas reservoirs[J].Oil & Gas Geology,2003,24(4):401-403.
[17] 昌伦杰,龙威,伍轶鸣,等.缝洞型碳酸盐岩凝析气藏压力衰竭过程中凝析油微观赋存状态[J].科学技术与工程,2021,21(26):11136-11143.CHANG Lunjie,LONG Wei,WU Yiming,et al.Gas condensate occurrence during the pressure depletion of fracture-vuggy carbonate condensate gas reservoir[J].Science Technology and Engineering,2021,21(26):11136-11143.
[18] TRAN K,ODIKE B,GARCEZ J,et al.Improved saturationpressure relationship and multiphase pseudo-pressure calculations for retrograde gas reservoir production under boundarydominated flow[J].Gas Science and Engineering,2024,125:205289.
[19] AHMED M E,SULTAN A S,HASSAN A,et al.Predicting the performance of constant volume depletion tests for gas condensate reservoirs using artificial intelligence techniques[J].Neural Computing and Applications,2022,34:22115-22125.
[20] FARAJI F,UGWU J O,CHONG P L.Modelling two-phase Z factor of gas condensate reservoirs:Application of artificial intelligence[J].Journal of Petroleum Science and Engineering,2022,208:109787.
[21] 焦方正.塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J].石油与天然气地质,2018,39(2):207-216.JIAO Fangzheng.Significance and prospect of ultra-deepcarbonate fault-karst reservoirs in Shunbei area,Tarim Basin[J].Oil & Gas Geology,2018,39(2):207-216.
[22] 马永生,蔡勋育,云露,等.塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J].石油勘探与开发,2022,49(1):1-17.MA Yongsheng,CAI Xunyu,YUN Lu,et al.Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas fields,Tarim Basin,NW China[J].Petroleum Exploration and Development,2022,49(1):1-17.
[23] 林波,云露,李海英,等.塔里木盆地顺北5号走滑断层空间结构及其油气关系[J].石油与天然气地质,2021,42(6):1344-1353.LIN Bo,YUN Lu,LI Haiying,et al.Spatial structure of Shunbei No.5 strike-slip fault and its relationship with oil and gas reservoirs in the Tarim Basin[J].Oil & Gas Geology,2021,42(6):1344-1353.
[24] 王素英,张翔,田景春,等.塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J].岩性油气藏,2021,33(5):81-94.WANG Suying,ZHANG Xiang,TIAN Jingchun,et al.Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area,Tarim Basin[J].Lithologic Reservoirs,2021,33(5):81-94.
[25] 张智礼,李慧莉,焦存礼,等.塔里木盆地顺托果勒地区奥陶系鹰山组-恰尔巴克组地层划分对比研究[J].地学前缘,2021,28(1):90-103.ZHANG Zhili,LI Huili,JIAO Cunli,et al.Stratigraphic division and correlation of the Ordovician Yingshan and Qrebake Formations in the Shuntogole area,Tarim Basin[J].Earth Science Frontiers,2021,28(1):90-103.
[26] 彭军,夏梦,曹飞,等.塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J].岩性油气藏,2022,34(2):17-30.PENG Jun,XIA Meng,CAO Fei,et al.Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area I,Tarim Basin[J].Lithologic Reservoirs,2022,34(2):17-30.
[27] 程飞.缝洞型碳酸盐岩油藏储层类型动静态识别方法:以塔里木盆地奥陶系为例[J].岩性油气藏,2017,29(3):76-82.CHENG Fei.Integrated dynamic and static identification method of fractured-vuggy carbonate reservoirs:A case from the Ordovician in Tarim Basin[J].Lithologic Reservoirs,2017,29(3):76-82.
[28] 尚浩杰,陈叔阳,何云峰,等.断控缝洞型碳酸盐岩储层结构表征与三维地质建模:以顺北4号断裂带为例[J].石油学报,2024,45(11):1662-1679.SHANG Haojie,CHEN Shuyang,HE Yunfeng,et al.Structural characterization and 3D geologic modeling of fracture-controlled fracture-cavity carbonate reservoirs:A case study of Shunbei No.4 fault zone[J].Acta Petrolei Sinica,2024,45(11):1662-1679.
[29] 张煜,毛庆言,李海英,等.顺北中部超深层断控缝洞型油气藏储集体特征与实践应用[J].中国石油勘探,2023,28(1):1-13.ZHANG Yu,MAO Qingyan,LI Haiying,et al.Characteristics and practical application of ultra-deep fault-controlled fracturedcavity type reservoir in central Shunbei area[J].China Petroleum Exploration,2023,28(1):1-13.
[30] 卜旭强,王来源,朱莲花,等.塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J].岩性油气藏,2023,35(3):152-160.BU Xuqiang,WANG Laiyuan,ZHU Lianhua,et al.Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin[J].Lithologic Reservoirs,2023,35(3):152-160.
[31] KAMALI M Z,DAVOODI S,GHORBANI H,et al.Permeability prediction of heterogeneous carbonate gas condensate reservoirs applying group method of data handling[J].Marine and Petroleum Geology,2022,139:105597.
[32] GOUDA A,GOMAA S,ATTIA A,et al.Development of an artificial neural network model for predicting the dew point pressure of retrograde gas condensate[J].Journal of Petroleum Science and Engineering,2022,208:109284.
[33] JADIDI R,SEDAEE B,GERAMI S,et al.Mathematical modeling of well performance in shared gas condensate reservoirs[J].Geoenergy Science and Engineering,2024,235:212704.
[34] 彭威龙,邓尚,张继标,等.深层海相凝析油气藏成因机制与富集主控因素:以塔里木盆地顺北4号断裂带为例[J].天然气地球科学,2024,35(5):838-850.PENG Weilong,DENG Shang,ZHANG Jibiao,et al.Genetic mechanism and main controlling factors of deep marine condensate reservoirs:A case study of the Shunbei No.4 fault zone in Tarim Basin,NW China[J].Natural Gas Geoscience,2024,35(5):838-850.
[1] 谢会文, 张亮, 王斌, 罗浩渝, 张科, 章国威, 李玲, 申林. 塔里木盆地库车坳陷三叠纪古构造特征及对沉积的控制作用[J]. 岩性油气藏, 2025, 37(3): 13-22.
[2] 杨旭, 白鸣生, 龚汉渤, 李皋, 陶祖文. 川西新场地区三叠系须二段构造裂缝特征及定量预测[J]. 岩性油气藏, 2025, 37(3): 73-83.
[3] 赵艾琳, 赖强, 樊睿琦, 吴煜宇, 陈杰, 严双栏, 张家伟, 廖广志. 基性火山岩核磁共振响应机理及孔隙结构评价方法——以四川盆地西南部二叠系峨眉山玄武岩组为例[J]. 岩性油气藏, 2025, 37(3): 153-164.
[4] 张庆龙, 毛元元, 冯建松, 袁学生, 周微, 朱福金, 轩玲玲. 裂缝-孔隙型碳酸盐岩油藏加密井井位部署新方法——以渤海湾盆地黄骅坳陷唐海油田寒武系油藏为例[J]. 岩性油气藏, 2025, 37(3): 165-175.
[5] 徐有杰, 任宗孝, 向祖平, 樊晓辉, 于梦男. 非均质储层致密气藏压裂井复杂缝多井干扰数值试井模型[J]. 岩性油气藏, 2025, 37(3): 194-200.
[6] 梁鑫鑫, 张银涛, 陈石, 谢舟, 周建勋, 康鹏飞, 陈九洲, 彭梓俊. 塔里木盆地富满油田走滑断裂多核破碎带地震响应特征[J]. 岩性油气藏, 2025, 37(2): 127-138.
[7] 徐兆辉, 曾洪流, 胡素云, 张君龙, 刘伟, 周红英, 马德波, 傅启龙. 地震沉积学在塔里木盆地古城地区下寒武统沉积结构与储层预测中的应用[J]. 岩性油气藏, 2025, 37(2): 153-165.
[8] 熊昶, 王彭, 刘小钰, 王伟, 赵星星, 孙冲. 塔中隆起奥陶系油气性质及运聚富集模式[J]. 岩性油气藏, 2025, 37(1): 53-67.
[9] 何岩, 许维娜, 党思思, 牟蕾, 林少玲, 雷章树. 准噶尔盆地陆梁地区侏罗系西山窑组钙质夹层成因及勘探意义[J]. 岩性油气藏, 2025, 37(1): 90-101.
[10] 吴松, 冯冰, 于继良, 蓝宝锋, 李龙, 王胜, 沈家宁, 李刚权. 黔北正安地区安场向斜奥陶系五峰组—志留系龙马溪组页岩气富集规律[J]. 岩性油气藏, 2025, 37(1): 182-193.
[11] 陈肖, 缪云, 李伟, 谢明英, 施浩, 王伟峰. 海上边水驱砂岩油田合理油水井数比计算方法[J]. 岩性油气藏, 2025, 37(1): 194-200.
[12] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[13] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[14] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[15] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!