岩性油气藏 ›› 2025, Vol. 37 ›› Issue (5): 12–21.doi: 10.12108/yxyqc.20250502

• 新能源与伴生资源 • 上一篇    

多簇压裂条件下CO2-EGS干热岩水平井开发热-流-固三场耦合模型

杨永红1, 张世明1, 崔营滨1, 杨万芹1, 易红霞1, 刘巍1, 张立松2   

  1. 1. 中国石化胜利油田分公司 勘探开发研究院, 山东 东营 257015;
    2. 中国石油大学(华东)储运与建筑工程学院, 山东 青岛 266580
  • 收稿日期:2025-04-11 修回日期:2025-05-16 发布日期:2025-09-06
  • 第一作者:杨永红(1975—),男,硕士,高级工程师,主要从事地热资源评价与开发利用等工作。地址:(257015)山东省东营市东营区聊城路2号。Email:Yangyh.slyt@sinopec.com。
  • 通信作者: 张立松(1982—),男,博士,副教授,主要从事地热开发多场耦合理论研究工作。Email:lisongzhang1982@163.com。

Thermal-hydraulic-mechanical coupling model for development of CO2-EGS hot dry rock horizontal wells under multi-cluster fracturing condition

YANG Yonghong1, ZHANG Shiming1, CUI Yingbin1, YANG Wanqin1, YI Hongxia1, LIU Wei1, ZHANG Lisong2   

  1. 1. Exploration and Development Research Institute, Shengli Oilfield Company, Sinopec, Dongying 257015, Shandong, China;
    2. College of Pipeline and Civil Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China
  • Received:2025-04-11 Revised:2025-05-16 Published:2025-09-06

摘要: 通过引入基岩控制方程、裂缝控制方程和热-流-固耦合关系,并借助COMSOL软件,开展了多簇压裂条件下CO2-EGS干热岩热储水平井开发数值模拟研究。研究结果表明:①建立的数学模型重构了热-流-固耦合关系,修正了裂缝孔隙度和渗透率与应力的函数关系,改进了CO2密度、黏度和比热容随压力与温度的变化关系。②考虑基岩、盖岩和围岩的热补偿作用,提出了多源热补偿模拟方法,据此建立了多簇压裂条件下CO2-EGS干热岩热储水平井开发数值模型。③通过数值模拟,讨论了干热岩的温度场、渗流场及应力场的演化规律,揭示了水平井井网、多簇压裂缝网的布局以及超临界CO2的性质直接影响CO2-EGS的演化过程。④CO2-EGS干热岩热储水平井开发的控制因素包括热-流-固(THM)三场耦合机制、水平井井网参数和多簇压裂缝网参数。THM三场耦合产出液质量流量相对于TH两场耦合提高了5.76%,但取热周期缩短了3.3 a;合理的水平井井网参数为一注两采,水平井长度为1 250 m,水平井井距为300 m;最优的缝网参数为缝间距75 m、缝宽3 mm、缝高40 m。

关键词: 干热岩, CO2-EGS, 热-流-固耦合, 水平井, 数值模型, 多簇压裂, 最大采热量

Abstract: Through the incorporation of bedrock governing equations,fracture governing equations,and thermal-hydraulic-mechanical(THM)coupling relationships,and aidded by COMSOL software,numerical simulation research on the development of CO2-EGS hot dry rock reservoirs via horizontal wells under multicluster fracturing conditions was conducted. The results show that:(1)The established mathematical model reconstructed THM coupling relationships,modified the functional relationships between fracture porosity/permeability and stress,and improved the variations of CO2 density,viscosity,and specific heat capacity with pressure and temperature.(2)Considering the thermal compensation effects of bedrock,cap rock,and surrounding rock,a multi-source thermal compensation numerical simulation method was proposed,and a numerical model for CO 2-EGS hot dry rock reservoir development via horizontal wells under multi-cluster fracturing conditions was established.(3)Using the numerical model,the evolutions of the temperature field,seepage field,and stress field of hot dry rock were discussed,revealing that the horizontal well patterns,the configuration of multicluster fracture networks,and the properties of supercritical CO2 directly influence the evolution process of CO2- EGS.(4)The controlling factors for CO2-EGS hot dry rock reservoir development via horizontal wells were identified as the THM coupling mechanism,horizontal well pattern parameters,and multi-cluster fracture network parameters. Compared with TH coupling,THM coupling increases the produced fluid mass flow rate by 5.76%, shortens the heat extraction period by 3.3 years. The reasonable horizontal well pattern parameters are one injection well and two production wells,with a horizontal well length of 1 250 m,and a well spacing of 300 m. While the optimal fracture network parameters are a fracture spacing of 75 m,fracture width of 3 mm,and fracture height of 40 m.

Key words: hot dry rock, CO2-EGS, THM coupling, horizontal well, numerical model, multi-cluster fractures, maximum heat recovery

中图分类号: 

  • TE357.7
[1] 屈卫华,田野,董常春,等. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏,2024,36(6):122-134. QU Weihua,TIAN Ye,DONG Changchun,et al. Characteristics of Cretaceous source rocks and their controlling effect on hydrocarbon accumulation in Dehui Fault Depression,Songliao Basin[J]. Lithologic Reservoirs,2024,36(6):122-134.
[2] 刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158-174. LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158-174.
[3] 桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430-1451. SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430-1451.
[4] GENTZIS T. Subsurface sequestration of carbon dioxide:An overview from an Alberta(Canada)perspective[J]. International Journal of Coal Geology,2000,43(1/4):287-305.
[5] 王社教,施亦做,方朝合,等. 中国油田地热开发利用现状与发展方向[J]. 岩性油气藏,2024,36(2):23-32. WANG Shejiao,SHI Yizuo,FANG Chaohe,et al. Status and development trends of geothermal development and utilization in oilfields of China[J]. Lithologic Reservoirs,2024,36(2):23-32.
[6] 崔传智,李静,吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏,2024,36(6):181-188. CUI Chuanzhi,LI Jing,WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption[J]. Lithologic Reservoirs,2024,36(6):181-188.
[7] 杨兆臣,卢迎波,杨果,等. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏,2024,36(1):178-184. YANG Zhaochen,LU Yingbo,YANG Guo,et al. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil[J]. Lithologic Reservoirs,2024,36(1):178-184.
[8] 卜宪标,郭志鹏,李华山,等. CO2单井增强地热系统取热性能研究[J]. 新能源进展,2022,10(6):509-518. BU Xianbiao,GUO Zhipeng,LI Huashan,et al. Heat extraction performance of CO2 single-well enhanced geothermal system[J]. Advances in New and Renewable Energy,2022,10(6):509-518.
[9] 郭平,许清华,孙振,等. 天然气藏CO2驱及地质埋存技术研究进展[J]. 岩性油气藏,2016,28(3):6-11. GUO Ping,XU Qinghua,SUN Zhen,et al. Research progress of CO 2 flooding and geological storage in gas reservoirs[J]. Lithologic Reservoirs,2016,28(3):6-11.
[10] LIU Shuyang,SUN Baojiang,XU Jianchun,et al. Study on competitive adsorption and displacing properties of CO2 enhanced shale gas recovery:Advances and challenges[J]. Geofluids, 2020,15:6657995.
[11] 张烈辉,曹成,文绍牧,等. 碳达峰碳中和背景下发展CO2- EGR的思考[J]. 天然气工业,2023,43(1):13-22. ZHANG Liehui,CAO Cheng,WEN Shaomu,et al. Thoughts on the development of CO2-EGR under the background of carbon peak and carbon neutrality[J]. Natural Gas Industry,2023, 43(1):13-22.
[12] PRUESS K. Enhanced geothermal systems(EGS):Comparing water with CO 2 as heat transmission fluids[R]. Dallas,Geothermal Energy Utilization Conference,2008.
[13] RANDOLPH J B,SAAR M O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable,porous geologic formations:Implications for CO2 sequestration[J]. Energy Procedia,2011,4:2206-2213.
[14] GHASSEMI A,ZHOU X. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems[J]. Geothermics,2011,40(1):39-49.
[15] KOH J,ROSHAN H,RAHMAN S S. A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs[J]. Computers and Geotechnics,2011,38:669-682.
[16] JING Yani,JING Zhenzi,RICHARDS W J,et al. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir[J]. Journal of Volcanology and Geothermal Research,2014,269:14-22.
[17] 曹文炅,黄文博,蒋方明. 地下热流固耦合对EGS热开采的影响[J]. 新能源进展,2015,3(6):444-451. CAO Wenjiong,HUANG Wenbo,JIANG Fangming. The thermalhydraulic-mechanical coupling effects on heat extraction of enhanced geothermal systems[J]. Advances in New and Renewable Energy,2015,3(6):444-451.
[18] HICKS T W,PINE R J,RICHARDS W J,et al. A hydrothermos-mechanical numerical model for HDR geothermal reservoir evaluation[J]. International Journal of Rock Mechanics & Mining Sciences,1996,33(5):499-511.
[19] TARON J,ELSWORTH D. Thermal-hydrologic-mechanicalchemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46(5):855-864.
[20] TARON J,ELSWORTH D,MIN K B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable,fractured porous media[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46(5):842-854.
[21] MCDERMOTT C I,RANDRIAMANJATOSOAA R L,TENZER H,et al. Simulation of heat extraction from crystalline rocks:The influence of coupled processes on differential reservoir cooling[J]. Geothermics,2006,35(3):321-344.
[22] SUN Yuexue,ZHANG Xiao,LI Xianghui,et al. Study on the intrinsic mechanisms underlying enhanced geothermal system (EGS)heat transfer performance differences in multi-wells[J]. Energy Conversion and Management,2023,292:117361.
[23] 李静岩,刘中良,周宇,等. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报,2019,70(1):72-82. LI Jingyan,LIU Zhongliang,ZHOU Yu,et al. Study of thermalhydrologic-mechanical numerical simulation model on CO2 plume geothermal system[J]. CIESC Journal,2019,70(1):72-82.
[24] 李培超,孔祥言,卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展,2003,18(4):419-426. LI Peichao,KONG Xiangyan,LU Detang. Mathematical modeling of flow in saturated porous media on account of fluidstructure coupling effect[J]. Journal of Hydrodynamics,2003, 18(4):419-426.
[25] 戴永浩,陈卫忠,伍国军,等. 非饱和岩体弹塑性损伤模型研究与应用[J]. 岩石力学与工程学报,2008,27(4):728-735. DAI Yonghao,CHEN Weizhong,WU Guojun,et al. Study on elastoplastic damage model of unsaturated rock mass and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(4):728-735.
[26] 王辉. 孔隙型热储开采适宜区识别及采灌模式优化研究[D]. 青岛:山东大学,2023. WANG Hui. Research on identification of suitable exploitation area and optimization of exploitation and reinjection mode for porous medium reservoir[D]. Qingdao:Shandong University, 2023.
[27] LI Jiawei,LI Zi,YUAN Wanju,et al. Numerical investigation of liquid and supercritical CO2 flow behaviors through 3D selfaffine rough fractures[J]. Fuel,2019,251:669-682.
[28] CUI Guodong,ZHANG Liang,REN Bo,et al. Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2:Heat mining rate and salt precipitation effects[J]. Applied Energy,2016,183:837-852.
[1] 聂仁仕, 张雨晴, 周杰, 袁安意, 蔡明金, 张焘, 卢聪, 曾凡辉. 考虑应力敏感及变井筒储集效应的水平井油气两相流试井模型[J]. 岩性油气藏, 2025, 37(4): 184-191.
[2] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[3] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[4] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[5] 周浩, 梁利侠. 水平井探测半径计算方法[J]. 岩性油气藏, 2024, 36(1): 157-168.
[6] 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.
[7] 蔡晖, 屈丹, 陈民锋. 组合井网储量动用规律及水平井加密合理技术策略——以渤海HD油田为例[J]. 岩性油气藏, 2021, 33(4): 147-155.
[8] 张运来, 陈建波, 周海燕, 张吉磊, 章威. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153.
[9] 姜瑞忠, 张春光, 郜益华, 耿艳宏, 余辉, 李昊远. 缝洞型碳酸盐岩油藏水平井分形非线性渗流[J]. 岩性油气藏, 2019, 31(6): 118-126.
[10] 安杰, 唐梅荣, 曹宗熊, 王文雄, 陈文斌, 吴顺林. 超低渗透低压油藏水平井转变开发方式试验[J]. 岩性油气藏, 2019, 31(5): 134-140.
[11] 徐有杰, 刘启国, 王瑞, 刘义成. 复合油藏压裂水平井复杂裂缝分布压力动态特征[J]. 岩性油气藏, 2019, 31(5): 161-168.
[12] 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164.
[13] 王蓓, 刘向君, 司马立强, 徐伟, 李骞, 梁瀚. 磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J]. 岩性油气藏, 2019, 31(2): 124-133.
[14] 黄全华, 林星宇, 童凯, 陆云, 付云辉. 非达西渗流边水气藏水平井见水时间预测[J]. 岩性油气藏, 2019, 31(1): 147-152.
[15] 李传亮, 朱苏阳, 柴改建, 董凤玲. 直井与水平井的产能对比[J]. 岩性油气藏, 2018, 30(N): 12-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!