岩性油气藏 ›› 2025, Vol. 37 ›› Issue (5): 1221.doi: 10.12108/yxyqc.20250502
• 新能源与伴生资源 • 上一篇
杨永红1, 张世明1, 崔营滨1, 杨万芹1, 易红霞1, 刘巍1, 张立松2
YANG Yonghong1, ZHANG Shiming1, CUI Yingbin1, YANG Wanqin1, YI Hongxia1, LIU Wei1, ZHANG Lisong2
摘要: 通过引入基岩控制方程、裂缝控制方程和热-流-固耦合关系,并借助COMSOL软件,开展了多簇压裂条件下CO2-EGS干热岩热储水平井开发数值模拟研究。研究结果表明:①建立的数学模型重构了热-流-固耦合关系,修正了裂缝孔隙度和渗透率与应力的函数关系,改进了CO2密度、黏度和比热容随压力与温度的变化关系。②考虑基岩、盖岩和围岩的热补偿作用,提出了多源热补偿模拟方法,据此建立了多簇压裂条件下CO2-EGS干热岩热储水平井开发数值模型。③通过数值模拟,讨论了干热岩的温度场、渗流场及应力场的演化规律,揭示了水平井井网、多簇压裂缝网的布局以及超临界CO2的性质直接影响CO2-EGS的演化过程。④CO2-EGS干热岩热储水平井开发的控制因素包括热-流-固(THM)三场耦合机制、水平井井网参数和多簇压裂缝网参数。THM三场耦合产出液质量流量相对于TH两场耦合提高了5.76%,但取热周期缩短了3.3 a;合理的水平井井网参数为一注两采,水平井长度为1 250 m,水平井井距为300 m;最优的缝网参数为缝间距75 m、缝宽3 mm、缝高40 m。
中图分类号:
[1] 屈卫华,田野,董常春,等. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏,2024,36(6):122-134. QU Weihua,TIAN Ye,DONG Changchun,et al. Characteristics of Cretaceous source rocks and their controlling effect on hydrocarbon accumulation in Dehui Fault Depression,Songliao Basin[J]. Lithologic Reservoirs,2024,36(6):122-134. [2] 刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158-174. LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158-174. [3] 桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430-1451. SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430-1451. [4] GENTZIS T. Subsurface sequestration of carbon dioxide:An overview from an Alberta(Canada)perspective[J]. International Journal of Coal Geology,2000,43(1/4):287-305. [5] 王社教,施亦做,方朝合,等. 中国油田地热开发利用现状与发展方向[J]. 岩性油气藏,2024,36(2):23-32. WANG Shejiao,SHI Yizuo,FANG Chaohe,et al. Status and development trends of geothermal development and utilization in oilfields of China[J]. Lithologic Reservoirs,2024,36(2):23-32. [6] 崔传智,李静,吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏,2024,36(6):181-188. CUI Chuanzhi,LI Jing,WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption[J]. Lithologic Reservoirs,2024,36(6):181-188. [7] 杨兆臣,卢迎波,杨果,等. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏,2024,36(1):178-184. YANG Zhaochen,LU Yingbo,YANG Guo,et al. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil[J]. Lithologic Reservoirs,2024,36(1):178-184. [8] 卜宪标,郭志鹏,李华山,等. CO2单井增强地热系统取热性能研究[J]. 新能源进展,2022,10(6):509-518. BU Xianbiao,GUO Zhipeng,LI Huashan,et al. Heat extraction performance of CO2 single-well enhanced geothermal system[J]. Advances in New and Renewable Energy,2022,10(6):509-518. [9] 郭平,许清华,孙振,等. 天然气藏CO2驱及地质埋存技术研究进展[J]. 岩性油气藏,2016,28(3):6-11. GUO Ping,XU Qinghua,SUN Zhen,et al. Research progress of CO 2 flooding and geological storage in gas reservoirs[J]. Lithologic Reservoirs,2016,28(3):6-11. [10] LIU Shuyang,SUN Baojiang,XU Jianchun,et al. Study on competitive adsorption and displacing properties of CO2 enhanced shale gas recovery:Advances and challenges[J]. Geofluids, 2020,15:6657995. [11] 张烈辉,曹成,文绍牧,等. 碳达峰碳中和背景下发展CO2- EGR的思考[J]. 天然气工业,2023,43(1):13-22. ZHANG Liehui,CAO Cheng,WEN Shaomu,et al. Thoughts on the development of CO2-EGR under the background of carbon peak and carbon neutrality[J]. Natural Gas Industry,2023, 43(1):13-22. [12] PRUESS K. Enhanced geothermal systems(EGS):Comparing water with CO 2 as heat transmission fluids[R]. Dallas,Geothermal Energy Utilization Conference,2008. [13] RANDOLPH J B,SAAR M O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable,porous geologic formations:Implications for CO2 sequestration[J]. Energy Procedia,2011,4:2206-2213. [14] GHASSEMI A,ZHOU X. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems[J]. Geothermics,2011,40(1):39-49. [15] KOH J,ROSHAN H,RAHMAN S S. A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs[J]. Computers and Geotechnics,2011,38:669-682. [16] JING Yani,JING Zhenzi,RICHARDS W J,et al. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir[J]. Journal of Volcanology and Geothermal Research,2014,269:14-22. [17] 曹文炅,黄文博,蒋方明. 地下热流固耦合对EGS热开采的影响[J]. 新能源进展,2015,3(6):444-451. CAO Wenjiong,HUANG Wenbo,JIANG Fangming. The thermalhydraulic-mechanical coupling effects on heat extraction of enhanced geothermal systems[J]. Advances in New and Renewable Energy,2015,3(6):444-451. [18] HICKS T W,PINE R J,RICHARDS W J,et al. A hydrothermos-mechanical numerical model for HDR geothermal reservoir evaluation[J]. International Journal of Rock Mechanics & Mining Sciences,1996,33(5):499-511. [19] TARON J,ELSWORTH D. Thermal-hydrologic-mechanicalchemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46(5):855-864. [20] TARON J,ELSWORTH D,MIN K B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable,fractured porous media[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46(5):842-854. [21] MCDERMOTT C I,RANDRIAMANJATOSOAA R L,TENZER H,et al. Simulation of heat extraction from crystalline rocks:The influence of coupled processes on differential reservoir cooling[J]. Geothermics,2006,35(3):321-344. [22] SUN Yuexue,ZHANG Xiao,LI Xianghui,et al. Study on the intrinsic mechanisms underlying enhanced geothermal system (EGS)heat transfer performance differences in multi-wells[J]. Energy Conversion and Management,2023,292:117361. [23] 李静岩,刘中良,周宇,等. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报,2019,70(1):72-82. LI Jingyan,LIU Zhongliang,ZHOU Yu,et al. Study of thermalhydrologic-mechanical numerical simulation model on CO2 plume geothermal system[J]. CIESC Journal,2019,70(1):72-82. [24] 李培超,孔祥言,卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展,2003,18(4):419-426. LI Peichao,KONG Xiangyan,LU Detang. Mathematical modeling of flow in saturated porous media on account of fluidstructure coupling effect[J]. Journal of Hydrodynamics,2003, 18(4):419-426. [25] 戴永浩,陈卫忠,伍国军,等. 非饱和岩体弹塑性损伤模型研究与应用[J]. 岩石力学与工程学报,2008,27(4):728-735. DAI Yonghao,CHEN Weizhong,WU Guojun,et al. Study on elastoplastic damage model of unsaturated rock mass and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(4):728-735. [26] 王辉. 孔隙型热储开采适宜区识别及采灌模式优化研究[D]. 青岛:山东大学,2023. WANG Hui. Research on identification of suitable exploitation area and optimization of exploitation and reinjection mode for porous medium reservoir[D]. Qingdao:Shandong University, 2023. [27] LI Jiawei,LI Zi,YUAN Wanju,et al. Numerical investigation of liquid and supercritical CO2 flow behaviors through 3D selfaffine rough fractures[J]. Fuel,2019,251:669-682. [28] CUI Guodong,ZHANG Liang,REN Bo,et al. Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2:Heat mining rate and salt precipitation effects[J]. Applied Energy,2016,183:837-852. |
[1] | 聂仁仕, 张雨晴, 周杰, 袁安意, 蔡明金, 张焘, 卢聪, 曾凡辉. 考虑应力敏感及变井筒储集效应的水平井油气两相流试井模型[J]. 岩性油气藏, 2025, 37(4): 184-191. |
[2] | 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14. |
[3] | 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188. |
[4] | 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177. |
[5] | 周浩, 梁利侠. 水平井探测半径计算方法[J]. 岩性油气藏, 2024, 36(1): 157-168. |
[6] | 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184. |
[7] | 蔡晖, 屈丹, 陈民锋. 组合井网储量动用规律及水平井加密合理技术策略——以渤海HD油田为例[J]. 岩性油气藏, 2021, 33(4): 147-155. |
[8] | 张运来, 陈建波, 周海燕, 张吉磊, 章威. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153. |
[9] | 姜瑞忠, 张春光, 郜益华, 耿艳宏, 余辉, 李昊远. 缝洞型碳酸盐岩油藏水平井分形非线性渗流[J]. 岩性油气藏, 2019, 31(6): 118-126. |
[10] | 安杰, 唐梅荣, 曹宗熊, 王文雄, 陈文斌, 吴顺林. 超低渗透低压油藏水平井转变开发方式试验[J]. 岩性油气藏, 2019, 31(5): 134-140. |
[11] | 徐有杰, 刘启国, 王瑞, 刘义成. 复合油藏压裂水平井复杂裂缝分布压力动态特征[J]. 岩性油气藏, 2019, 31(5): 161-168. |
[12] | 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164. |
[13] | 王蓓, 刘向君, 司马立强, 徐伟, 李骞, 梁瀚. 磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J]. 岩性油气藏, 2019, 31(2): 124-133. |
[14] | 黄全华, 林星宇, 童凯, 陆云, 付云辉. 非达西渗流边水气藏水平井见水时间预测[J]. 岩性油气藏, 2019, 31(1): 147-152. |
[15] | 李传亮, 朱苏阳, 柴改建, 董凤玲. 直井与水平井的产能对比[J]. 岩性油气藏, 2018, 30(N): 12-16. |
|