岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 191–200.doi: 10.12108/yxyqc.20250618

• 石油工程与油气田开发 • 上一篇    

聚驱后油层渗流特征及优势渗流通道形成机制

曹瑞波1,2, 皮彦夫1, 刘国超2   

  1. 1. 东北石油大学 提高油气采收率教育部重点实验室, 黑龙江 大庆 163318;
    2. 中国石油大庆 油田有限责任公司 勘探开发研究院, 黑龙江 大庆 163712
  • 收稿日期:2024-10-28 修回日期:2025-01-13 发布日期:2025-11-07
  • 第一作者:曹瑞波(1977—),男,东北石油大学在读博士研究生,高级工程师,主要从事化学驱提高采收率方面的研究工作。地址:(163712)黑龙江大庆市大庆油田勘探开发研究院实验中心。Email:caoreibo@petrochina.com.cn。
  • 通信作者: 皮彦夫(1976—),男,博士,教授,主要从事化学驱提高采收率方面的教学和研究工作。Email:154501294@qq.com。
  • 基金资助:
    国家科技重大专项“大庆长垣特高含水油田提高采收率示范工程”(编号:2016ZX05054)资助。

Characteristics of oil reservoir seepage and formation mechanism ofdominant seepage channel after polymer flooding

CAO Ruibo1,2, PI Yanfu1, LIU Guochao2   

  1. 1. Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Exploration and Development Research Institute of Daqing OilfieldLimited Company, Daqing 163712, Heilongjiang, China
  • Received:2024-10-28 Revised:2025-01-13 Published:2025-11-07

摘要: 针对大庆长垣聚驱后油层优势渗流通道普遍发育、低效或无效循环严重的问题,综合应用物模实验、数值模拟、典型区块动态分析等技术手段,研究了大庆长垣聚驱后油层渗流能力特征、优势渗流通道发育特征及形成机制。研究结果表明:①聚驱后非均质油层整体渗流能力下降,但高、低渗透率油层的渗流能力差距进一步拉大,高渗透率油层相对吸液量逐步增大。②大庆长垣聚驱后油层优势渗流通道主要发育在葡Ⅰ2、葡Ⅰ3单元的底部,平均有效厚度为3.8 m,占全井厚度的18.4%,平均空气渗透率达3 775 mD,含油饱和度仅为24.6%,剩余储量占比10.9%,相对吸入量高达60% 以上。③优势渗流通道形成机制包括:聚驱后非均质油层高、低渗透率油层的泥质含量变化导致渗透率级差进一步拉大,高、低渗透率油层含油饱和度及特征相渗曲线的差异导致水油流度比的大幅度拉大。

关键词: 聚驱后油层, 优势渗流通道, 渗流能力, 相对吸液量, 泥质含量, 含油饱和度, 相渗曲线, 水油流度比, 大庆长垣

Abstract: In response to the widespread development of dominant seepage channels, low efficient circulation on invalid circulation in the oil reservoirs after polymer flooding in Daqing placanticline, physical modeling experiments, numerical simulations, and dynamic analysis of typical blocks were used to study the seepage capacity, development of dominant seepage channels and formation mechanism of oil reservoirs after polymer flooding of Daqing placanticline. The results show that: (1) The overall seepage capacity of heterogeneous oil layers decreases after polymer flooding, however, the seepage capacity gap between high and low permeability oil reservoirs further widens, and the relative liquid intake of high permeability layers gradually increases.(2) After polymer flooding, the dominant seepage channels of oil reservoirs in Daqing placanticline are mainly developed at the bottom of PⅠ2 and PⅠ3 units, with an average effective thickness of 3.8 m, accounting for 18.4% of the total well thickness. The average air permeability is 3 775 mD, and the oil saturation is 24.6%. The remaining reserves account for 10.9%, and the relative fluid intake exceeds 60%.(3) The formation mechanism of dominant seepage channels includes: difference in mud content between high and low permeability layers in heterogeneous oil reservoirs after polymer flooding leads to further widening of permeability max-min ratio, and difference of oil saturation and characteristic relative permeability curves of oil reservoirs with high and low permeability leads to a significant increase in water oil mobility ratio.

Key words: oil reservoir after polymer flooding, dominant seepage channel, seepage capacity, relative liquidintake, mud content, oil saturation, relative permeability curve, water oil mobility ratio, Daqing placanticline

中图分类号: 

  • TE312
[1] WANG Yanzhong. Research of concentrating rules of remaining oil in fluvial facies positive rhythmic thick formation[D]. Beijing: China University of Geosciences(Beijing), 2006. 王延忠. 河流相正韵律厚油层剩余油富集规律研究[D]. 北京: 中国地质大学(北京), 2006.
[2] LIU Yuetian, SUN Baoli, YU Yongsheng. Fuzzy identificationand quantitative calculation method for big pore throat[J]. OilDrilling & Production Technology, 2003, 25(5): 54-59. 刘月田, 孙保利, 于永生. 大孔道模糊识别与定量计算方法[J]. 石油钻采工艺, 2003, 25(5): 54-59.
[3] YANG Yong. Forming condition and opportunity of preponderant flowing channel in thick positive rhythm reservoir[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(3): 105-107. 杨勇. 正韵律厚油层优势渗流通道的形成条件和时机[J]. 油气地质与采收率, 2008, 15(3): 105-107.
[4] YAN Kun, HAN Peihui, CAO Ruibo, et al. Establishment andapplication of numerical simulation identification method fordominant seepage channels after polymer flooding[J]. Reser voir Evaluation and Development, 2019, 9(2): 33-37. 闫坤, 韩培慧, 曹瑞波, 等. 聚驱后优势渗流通道流线数值模拟识别方法的建立及应用[J]. 油气藏评价与开发, 2019, 9 (2): 33-37.
[5] WANG Mingchuan, SHI Chengfang, ZHU Weiyao, et al. Identification and accurate description of preponderance flow path [J]. Petroleum Geology and Recovery Efficiency, 2016, 23(1): 80-84. 王鸣川, 石成方, 朱维耀, 等. 优势渗流通道识别与精确描述[J]. 油气地质与采收率, 2016, 23(1): 80-84.
[6] LIU Haibo. Dominant flowing channels distribution and seepage characteristics after polymer flooding in Daqing oilfield [J]. Petroleum Geology and Recovery Efficiency, 2014, 21(5): 69-72. 刘海波. 大庆油区长垣油田聚驱后优势渗流通道分布及渗流特征[J]. 油气地质与采收率, 2014, 21(5): 69-72.
[7] LIU Guochao. Study on distribution and plugging method ofdominant seepage channels after polymer flooding[J]. Journalof Petrochemical Universities, 2021, 34(4): 46-51. 刘国超. 聚驱后优势渗流通道分布特征及封堵方法[J]. 石油化工高等学校学报, 2021, 34(4): 46-51.
[8] LI Xiulan. Dynamic characteristics analysis of non-Darcy flowwith high velocity in preferred flowing path[J]. Petroleum Geology and Recovery Efficiency, 2009, 23(6): 93-97. 李秀兰. 优势渗流通道中的高速非达西渗流动态特征分析[J]. 油气地质与采收率, 2009, 23(6): 93-97.
[9] NIU Shizhong, HU Wangshui, XIONG Ping, et al. Quantitative description of high-capacity channels in Gaotaizi Reservior ofHonggang Oil Field[J]. Petroleum Geology & Experiment, 2012, 34(2): 202-206. 牛世忠, 胡望水, 熊平, 等. 红岗油田高台子油藏储层大孔道定量描述[J]. 石油实验地质, 2012, 34(2): 202-206.
[10] FENG Qihong, SHI Shubin, WANG Sen, et al. Identification ofthief zones based on dynamic data[J]. Petroleum Geology andRecovery Efficiency, 2011, 18(1): 74-76. 冯其红, 史树彬, 王森, 等. 利用动态资料计算大孔道参数的方法[J]. 油气地质与采收率, 2011, 18(1): 74-76.
[11] LIU Guochao, CAO Ruibo, YAN Wei, et al. Calculation methodand its application of reservoir dominant flow path parametersafter polymer flooding[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(5): 90-98. 刘国超, 曹瑞波, 闫伟, 等. 聚驱后油层优势渗流通道参数计算方法及其应用[J]. 大庆石油地质与开发, 2023, 42(5): 90-98.
[12] ZENG Xu, BIAN Congsheng, SHEN Rui, et al. Nonlinear seepage characteristics of shale oil reservoirs of the third member ofPaleogene Shahejie Formation in Qikou Sag, Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 40-50. 曾旭, 卞从胜, 沈瑞, 等. 渤海湾盘底歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[13] CUI Chuanzhi, LI Jing, WU Zhongwei, et al. Simulation of microscopic seepage characteristics of CO2 immiscible floodingunder the effect of diffusion and adsorption[J]. Lithologic Reservoirs, 2024, 36(6): 181-188. 崔传智, 李静, 吴忠维, 等. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[14] RAN Yixuan, WANG Jian, ZHANG Yi, et al. Favorable exploration area and formation condition of bedrock reservoir in thecentral paleo-uplift, north Songliao Basin[J]. Lithologic Reservoirs, 2024, 36(6): 66-76. 冉逸轩, 王健, 张熠, 等. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[15] XIE Kun, SU Cheng, LIU Changlong, et al. Profile change ruleduring CR3+ polymer weak gel flooding and related improvingmethod[J]. Lithologic Reservoirs, 2022, 34(6): 160-170. 谢坤, 苏程, 刘长龙, 等. CR3+聚合物弱凝胶调驱剖面变化规律及改善方法[J]. 岩性油气藏, 2022, 34(6): 160-170.
[16] ZHAO Guozhong, DONG Dapeng, XIAO Luchuan. Calculation of two-phase relative permeability curves based on a lowvelocity non-Darcy flow model[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 69-77. 赵国忠, 董大鹏, 肖鲁川. 两相低速非达西渗流模型及相对渗透率曲线求取方法[J]. 油气地质与采收率, 2022, 29(2): 69-77.
[17] QIAN Zhen, MAO Zhiqiang, ZHENG Wei, et al. Experimenton profile control and water plugging of rubber particles ininter-well single fractured-vuggy reservoirs[J]. Lithologic Reservoirs, 2023, 35(4): 161-168. 钱真, 毛志强, 郑伟, 等. 井间单套缝洞型油藏橡胶颗粒调剖堵水实验[J]. 岩性油气藏, 2023, 35(4): 161-168.
[18] CHEN Xiao, MIAO Yun, LI Wei, et al. Calculation method forreasonable oil-water well ratio in the edge water drive offshoresandstone oilfield[J]. Lithologic Reservoirs, 2025, 37(1): 194-200. 陈肖, 缪云, 李伟, 等. 海上边水驱砂岩油田合理油水井数比计算方法[J]. 岩性油气藏, 2025, 37(1): 194-200.
[19] ZHANG Yuxiang, YAN Haijun, WEI Yunsheng, et al. Effect ofpore throat structure on flow capacity of multi-type ultra-deepcarbonate gas reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2024, 48(4): 131-140. 张钰祥, 闫海军, 位云生, 等. 孔喉结构对超深层碳酸盐岩气藏多类型储层渗流能力的影响[J]. 中国石油大学学报(自然科学版), 2024, 48(4): 131-140.
[20] LU Yingbo. Formation mechanism and percolation characteristics of secondary foamy oil by gas injection in super heavy oil [J]. Lithologic Reservoirs, 2022, 34(6): 152-159. 卢迎波. 超稠油注气次生泡沫油生成机理及渗流特征[J]. 岩性油气藏, 2022, 34(6): 152-159.
[21] ZHONG Huiying, YU Chengzhi, SHEN Wenxia, et al. Characteristics of fracture interference between horizontal wells in tightreservoirs considering threshold pressure gradient[J]. Lithologic Reservoirs, 2024, 36(3): 172-179. 钟会影, 余承挚, 沈文霞, 等. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[22] LIU Junrong, HAN Yanhui, WANG Zhe, et al. Identification offluid type in wellbore based on distributed acoustic sensingdata and machine learning[J]. Journal of China University ofPetroleum(Edition of Natural Science), 2023, 47(3): 107-114. 刘均荣, 韩艳慧, 王哲, 等. 基于分布式光纤声波监测数据和机器学习的井筒流体类型识别方法[J]. 中国石油大学学报(自然科学版), 2023, 47(3): 107-114.
[23] SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield[J]. Lithologic Reservoirs, 2022, 34(4): 150-158. 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[24] YUE Shijun, LIU Yingru, XIANG Yiwei, et al. A new methodfor calculating dynamic reserves and water influx of waterinvaded gas reservoirs[J]. Lithologic Reservoirs, 2023, 35(5): 153-160. 岳世俊, 刘应如, 项燚伟, 等. 一种水浸气藏动态储量和水浸量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[1] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[2] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[3] 白杨, 张晓磊, 刚文哲, 张忠义, 杨尚儒, 庞锦莲, 曹晶晶, 侯云超. 鄂尔多斯盆地平凉北地区上三叠统长8段储层低含油饱和度油藏特征及成因[J]. 岩性油气藏, 2023, 35(3): 66-75.
[4] 毛锐, 牟立伟, 王刚, 樊海涛. 基于核磁共振自由弛豫特征的含油性评价方法——以玛湖凹陷下乌尔禾组砾岩储层为例[J]. 岩性油气藏, 2021, 33(5): 140-147.
[5] 李亚哲, 王力宝, 郭华军, 单祥, 邹志文, 窦洋. 基于地震波形指示反演的砂砾岩储层预测——以中拐-玛南地区上乌尔禾组为例[J]. 岩性油气藏, 2019, 31(2): 134-142.
[6] 石小茜. 自然伽马反演模型重构方法研究[J]. 岩性油气藏, 2016, 28(4): 95-100.
[7] 付 广, 宿碧霖, 历 娜. 一种利用断层岩泥质含量判断断层侧向封闭性的方法及其应用[J]. 岩性油气藏, 2016, 28(2): 101-106.
[8] 张一果,孙卫,任大忠,王越,齐恒玄,屈雪峰. 鄂尔多斯盆地英旺油田长8 储层微观孔隙结构特征研究[J]. 岩性油气藏, 2013, 25(3): 71-76.
[9] 赵卫卫,査明. 陆相断陷盆地岩性油气藏成藏过程物理模拟及机理初探[J]. 岩性油气藏, 2011, 23(6): 37-43.
[10] 吕栋梁,唐海,吕渐江,马小明,余贝贝,汪全林. 气井产水时产能方程的确定[J]. 岩性油气藏, 2010, 22(4): 112-115.
[11] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92-95.
[12] 李先鹏. 胶结指数的控制因素及评价方法[J]. 岩性油气藏, 2008, 20(4): 105-108.
[13] 王晓光, 旷红伟, 伍泽云, 苏静. 无孔隙度测井条件下储层孔隙度求取方法探讨[J]. 岩性油气藏, 2008, 20(3): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!