岩性油气藏 ›› 2021, Vol. 33 ›› Issue (6): 165–176.doi: 10.12108/yxyqc.20210617

• 勘探技术 • 上一篇    下一篇

应用测井储层因子预测变质碎屑岩裂缝-孔隙型储层——以海拉尔盆地贝尔凹陷基岩为例

李娟1,2, 郑茜1, 孙松领1, 张斌1, 陈广坡1, 何巍巍1, 韩乾凤1   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 中国石油天然气集团公司 油藏描述重点实验室, 兰州 730020
  • 收稿日期:2021-04-02 修回日期:2021-06-08 出版日期:2021-12-01 发布日期:2021-11-25
  • 第一作者:李娟(1982-),女,高级工程师,主要从事油气地质与沉积储层研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号中国石油勘探开发研究院西北分院。Email:lijuan_xb@petrochina.com.cn。
  • 基金资助:
    中国石油天然气股份有限公司科技项目“海拉尔盆地富油气断陷综合研究与有利区带评价”(编号:101017kt1604003x20)资助

Prediction of fracture-pore reservoirs in metamorphic clastic rocks using logging reservoir factors: A case study of basement in Beier Sag,Hailar Basin

LI Juan1,2, ZHENG Xi1, SUN Songling1, ZHANG Bin1, CHEN Guangpo1, HE Weiwei1, HAN Qianfeng1   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    2. Key Laboratory of Reservoir Description, CNPC, Lanzhou 730020, China
  • Received:2021-04-02 Revised:2021-06-08 Online:2021-12-01 Published:2021-11-25

摘要: 以海拉尔盆地贝尔凹陷变质碎屑岩基岩为例,基于测井、地震及测试生产数据,考虑岩性控储因素与基岩潜山的纵向分带等特征,应用综合概率法获取测井储层因子定量表征裂缝-孔隙型储层,结合地震波形指示反演预测裂缝-孔隙型储层分布。结果表明,综合概率法获得的测井储层因子较单一电阻率模型能更好反映裂缝-孔隙型储层的发育程度,与基于相控理论的地震波形指示反演方法结合实现基岩潜山裂缝-孔隙型储层的定量预测。当储层预测值大于阈值时,储层发育,值越大,储层发育程度越高;岩性和原始沉积地层的层状特征影响有效储层在剖面上呈现短丘、豆状的准连续层状分布形态。优质储层发育受基岩垂向分带、断裂和构造位置的控制,好储层主要发育在断裂带附近,以及背斜、断背斜、断块等构造高部位。中—弱风化带储层最好,强风化带次之,未风化基岩内幕段局部发育储层。研究结果在变质碎屑岩裂缝-孔隙型储层预测方面有较大的应用推广价值。

关键词: 测井储层因子, 地震波形指示反演, 裂缝-孔隙型储层, 定量预测, 变质碎屑岩, 古潜山, 贝尔凹陷

Abstract: Taking the basement reservoir of metamorphic clastic rock in Beier Sag, Hailar Basin as an example, considering the characteristics of lithology controlling reservoir and vertical zonation structure, based on well logging, seismic data and production test data, comprehensive probability method was used to obtain logging reservoir factors to quantitatively characterize fracture-pore reservoirs, and to predict the distribution of the reservoirs by combining seismic motion inversion. The results show that the logging reservoir factor can better reflect the reservoir development than the single well logging resistivity model. The combination of the seismic motion inversion based on phase controlling theory and logging reservoir factor is effective to predict the fracture-pore reservoir quantitatively. If the predicted value is greater than the threshold value, the reservoir develops. The larger the predicted value is, the more developed the fractured reservoir is. The lithology and original sedimentary laminar formation result in the effective reservoirs in the form of quasi-continuously layer as the shape of short mounds or beans in section. The high-quality reservoirs are controlled by vertical zonation, fault system and structural location. The good reservoirs overall distribute near faults zone, anticline, faulted anticline, fault block or other structural high position. The reservoir properties in the moderately-weakly weathered facies are the best, the strongly weathered facies is medium, and the reservoirs in the unweathered facies are only locally developed. The research results have great application and popularization value for the prediction of fracture-pore reservoir in basement with metamorphic clastic rock.

Key words: logging reservoir factor, seismic motion inversion, fracture-pore reservoir, quantitative prediction, metamorphic clastic rock, buried hill, Beier Sag

中图分类号: 

  • TE122
[1] PRICE N J. Fault and joint development in brittle and semi-brittle rock. Oxford:Pergamon Press, 1966:165-172.
[2] PEREZ M A, GRECHKA V, MICHELENA R J. Fracture detection in a carbonate reservoir using a variety of seismic methods. Geophysics, 1999, 64(4):1266-1276.
[3] 邓攀, 陈孟晋, 杨泳. 分形方法对裂缝性储集层的定量预测研究和评价. 大庆石油地质与开发, 2006, 25(2):18-20. DENG P, CHEN M J, YANG Y. The application of fractal approach to the quantitative estimation research and evaluation of fractured reservoir. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(2):18-20.
[4] JENKINS C, OUENES A, ZELLOU A, et al. Quantifying and predicting naturally fractured reservoir behavior with continuous fracture models. AAPG Bulletin, 2009, 93(11):1597-1608.
[5] 周新桂, 张林炎, 屈雪峰, 等. 沿河湾探区低渗透储层构造裂缝特征及分布规律定量预测.石油学报, 2009, 30(2):195-200. ZHOU X G, ZHANG L Y, QU X F, et al. Characteristics and quantitative prediction of distribution laws of tectonic fractures of low-permeability reservoirs in Yanhewan area. Acta Petrolei Sinica, 2009, 30(2):195-200.
[6] 鞠玮, 侯贵廷, 冯胜斌, 等. 鄂尔多斯盆地庆城-合水地区延长组长63储层构造裂缝定量预测. 地学前缘, 2014, 21(6):310-320. JU W, HOU G T, FENG S B, et al. Quantitative prediction of the Yanchang Formation Chang 63 reservoir tectonic fracture in the Qingcheng-Heshui area, Ordos Basin. Earth Science Frontiers, 2014, 21(6):310-320.
[7] 詹彦, 侯贵廷, 孙雄伟, 等. 库车坳陷东部侏罗系砂岩构造裂缝定量预测. 高校地质学报, 2014, 20(2):294-302. ZHAN Y, HOU G T, SUN X W, et al. Quantitative prediction of tectonic fractures of Jurassic sandstones in the eastern Kuche Depression. Geological Journal of China Universities, 2014, 20(2):294-302.
[8] 王珂, 戴俊生, 王俊鹏, 等. 塔里木盆地克深2气田储层构造裂缝定量预测. 大地构造与成矿学, 2016, 40(6):1123-1135. WANG K, DAI J S, WANG J P, et al. Distribution of reservoir structural fractures and quantitative prediction of Keshen-2 gas field, Tarim Basin. Geotectonica et Metallogenia, 2016, 40(6):1123-1135.
[9] 张继标, 刘士林, 戴俊生, 等. 塔里木盆地玉北地区奥陶系储层构造裂缝定量预测. 地质力学学报, 2019, 25(2):31-40. ZHANG J B, LIU S L, DAI J S, et al. The quantitative prediction of structural fractures in Ordovician reservoir in Yu-bei area, Tarim Basin. Journal of Geomechanics, 2019, 25(2):31-40.
[10] 王蓓, 刘向君, 司马立强, 等. 磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用. 岩性油气藏, 2019, 31(2):124-133. WANG B, LIU X J, SIMA L Q, et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application. Lithologic Reservoirs, 2019, 31(2):124-133.
[11] 周新桂, 邓宏文, 操成杰, 等. 储层构造裂缝定量预测研究及评价方法. 地球学报, 2003,24(2):79-84. ZHOU X G, DENG H W, CAO C J, et al. The methods for quantitative prediction and evaluation of structural fissures in reservoirs. Acta Geoscientia Sinica, 2003, 24(2):79-84.
[12] 徐会永, 冯建伟, 葛玉荣. 致密砂岩储层构造裂缝形成机制及定量预测研究进展. 地质力学学报, 2013, 19(4):377-384. XU H Y, FENG J W, GE Y R. Research progress on mechanism and quantitative prediction of structural fractures in tight-sand reservoirs. Journal of Geomechanics, 2013, 19(4):377-384.
[13] 周文, 尹太举, 张亚春, 等. 蚂蚁追踪技术在裂缝预测中的应用:以青西油田下沟组为例.岩性油气藏, 2015, 27(6):111-118. ZHOU W, YIN T J, ZHANG Y C, et al. Application of ant tracking technology to fracture prediction:A case study from Xiagou Formation in Qingxi oilfield. Lithologic Reservoirs, 2015, 27(6):111-118.
[14] 王建君, 李井亮, 李林, 等. 基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例. 岩性油气藏, 2020, 32(5):122-132. WANG J J, LI J L, LI L, et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area. Lithologic Reservoirs, 2020, 32(5):122-132.
[15] 张璐, 何峰, 陈晓智, 等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征. 岩性油气藏, 2020, 32(2):108-114. ZHANG L, HE F, CHEN X Z, et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control. Lithologic Reservoirs, 2020, 32(2):108-114.
[16] 赵才顺, 万欢, 张昊, 等. 纵波方位各向异性正演模拟及叠前裂缝检测应用研究:以鄂尔多斯盆地致密砂岩气区块为例. 地球物理学进展, 2019, 34(1):257-265. ZHAO C S, WAN H, ZHANG H, et al. Research application of the P-wave anisotropy forward modeling and pre-stack fracture detection:Take the tight sandstone gas block in Ordos Basin as an example. Progress in Geophysics(in Chinese), 2019, 34(1):257-265.
[17] 贾跃玮, 魏水建, 吕林. 应用地震纵波方位各向异性定量预测火山岩裂缝. 石油物探, 2014, 53(4):477-483. JIA Y W, WEI S J, LYU L. Application of seismic p-wave azimuthal anisotropy in volcanic fracture quantitative prediction. Geophysical Prospecting for Petroleum, 2014, 53(4):477-483.
[18] 姜晓宇, 张研, 甘利灯, 等. 花岗岩潜山裂缝地震预测技术. 石油地球物理勘探, 2020, 55(3):694-704. JIANG X Y, ZHANG Y, GAN L D, et al. Seismic techniques for predicting fractures in granite buried hills. Oil Geophysical Prospecting, 2020, 55(3):694-704.
[19] 丁燕, 杜启振, Qamar Yasin, 等. 基于深度学习的裂缝预测在S区潜山碳酸盐岩储层中的应用. 石油物探, 2020, 59(2):267-275. DING Y, DU Q Z, QAMAR Y, et al. Fracture prediction based on deep learning:Application to a buried hill carbonate reservoir in the S area. Geophysical Prospecting for Petroleum, 2020, 59(2):267-275.
[20] 章惠, 关达, 向雪梅, 等. 川东北元坝东部须四段裂缝型致密砂岩储层预测. 岩性油气藏, 2018, 30(1):133-139. ZHANG H, GUAN D, XIANG X M, et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):133-139.
[21] 陈彦虎, 蒋龙聪, 胡俊, 等. 页岩储层裂缝型孔隙定量预测的新方法. 地质科技情报, 2018, 37(1):115-121. CHEN Y H, JIANG L C, HU J, et al. A new method for quantitative prediction of fractured pores in shale gas reservoirs. Geological Science and Technology Information, 2018, 37(1):115-121.
[22] 李娟, 孙松领, 陈广坡, 等. 海拉尔盆地浅变质岩潜山岩性控储特征及储层岩性序列识别.岩性油气藏, 2018, 30(4):26-36. LI J, SUN S L, CHEN G P, et al. Controlling of epimetamorphic rock lithology on basement reservoir and identification of lithological sequence of reservoir in Hailar Basin. Lithologic Reservoirs, 2018, 30(4):26-36.
[23] 肖小玲, 靳秀菊, 张翔, 等. 基于常规测井与电成像测井多信息融合的裂缝识别.石油地球物理勘探, 2015, 50(3):542-547. XIAO X L, JIN X J, ZHANG X, et al. Fracture identification based on information fusion of conventional logging and electrical imaging logging. Oil Geophysical Prospecting, 2015, 50(3):542-547.
[24] SIBBIT A M, FAIVRE Q. The dual laterolog response in fractured rocks. Dalas:SPWLA 26 th Annual Logging Symposium, 1985:17-20.
[25] PHILIPPE A P, ROGER N A. In situ measurement of electrical resistivity, formation anisotropy and tectonic context. Lafayette:SPWLA 31th Annual Logging Symposium, 1990:24-27.
[26] 陈义国, 赵谦平, 杨文博, 等. 双侧向测井裂缝孔隙模型考察与改进. 大庆石油地质与开发, 2011, 30(4):171-174. CHEN Y G, ZHAO Q P, YANG W B, et al. Examination and improvement of fracture-pore model for dual-lateral logging. Petroleum Geology & Oilfield Development in Daqing, 2011, 30(4):171-174.
[27] 李善军, 肖承文, 汪涵明, 等. 裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释. 地球物理学报, 1996, 39(6):845-852. LI S J, XIAO C W, WANG H M, et al. Mathematical model of dual latero-log response to fracture and quantitative interpretation of fracture porosity. Acta Geophysica Sinica, 1996, 39(6):845-852.
[28] 杨涛, 乐友喜, 吴勇. 波形指示反演在储层预测中的应用. 地球物理学进展, 2018, 33(2):769-776. YANG T, LE Y X, WU Y. Application of the waveform inversion in reservoir prediction. Progress in Geophysics, 2018, 33(2):769-776.
[29] 李亚哲, 王力宝, 郭华军, 等. 基于地震波形指示反演的砂砾岩储层预测:以中拐-玛南地区上乌尔禾组为例. 岩性油气藏, 2019, 31(2):134-142. LI Y Z, WANG L B, GUO H J, et al. Prediction of glutenite reservoir based on seismic waveform indicative inversion:A case study of Upper Urho Formation in Zhongguai-Manan area. Lithologic Reservoirs, 2019, 31(2):134-142.
[30] 章雄, 张本健, 梁虹, 等. 波形指示叠前地震反演方法在致密含油薄砂层预测中的应用.物探与化探, 2018, 42(3):120-129. ZHANG X, ZHANG B J, LIANG H, et al. The application of pre-stack inversion based on seismic waveform indicator to the prediction of compact and thin oil-bearing sand layer. Geophysical and Geochemical Exploration, 2018, 42(3):120-129.
[31] 胡玮, 齐鹏, 杨江峰, 等. 波形指示反演在超深层致密砂岩薄储层中的应用. 地球物理学进展, 2018, 33(2):620-624. HU W, QI P, YANG J F, et al. Application of seismic motion inversion in identification of tight thin super deep reservoirs. Progress in Geophysics, 2018, 33(2):620-624.
[32] 李娟, 卫平生, 石兰亭, 等. 海拉尔盆地贝尔凹陷基岩储集层流体作用机制与成岩改造. 石油勘探与开发, 2020, 47(1):45-56. LI J, WEI P S, SHI L T, et al. Fluid interaction mechanism and diagenetic reformation for basement reservoir, Beier Sag, Hailar Basin, China. Petroleum Exploration and Development, 2020, 47(1):45-56.
[1] 李璐萍, 梁金同, 刘四兵, 郭艳波, 李堃宇, 和源, 金九翔. 川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2022, 34(3): 39-48.
[2] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[3] 李亚哲, 王力宝, 郭华军, 单祥, 邹志文, 窦洋. 基于地震波形指示反演的砂砾岩储层预测——以中拐-玛南地区上乌尔禾组为例[J]. 岩性油气藏, 2019, 31(2): 134-142.
[4] 王伟, 吴奎, 何京, 张金辉, 沈洪涛. 锦州25-1油田优质储层地震响应特征与定量预测[J]. 岩性油气藏, 2018, 30(3): 100-111.
[5] 吴海波,李军辉,刘 赫. 海拉尔盆地乌尔逊—贝尔凹陷层序构成样式及油气成藏模式[J]. 岩性油气藏, 2015, 27(5): 155-160.
[6] 付 广,吴 伟. 乌尔逊—贝尔凹陷油气成藏模式及其主控因素[J]. 岩性油气藏, 2015, 27(1): 14-20.
[7] 吴兴宁,吕玉珍,田继强,郭永军. 冀中坳陷碳酸盐岩潜山内幕盖层特征与评价[J]. 岩性油气藏, 2011, 23(3): 49-54.
[8] 孙勤华,刘晓梅,刘建新,张继娟. 利用波形分析技术半定量预测塔中碳酸盐岩储层[J]. 岩性油气藏, 2010, 22(1): 101-103.
[9] 郑荣才,胡诚,董霞. 辽西凹陷古潜山内幕结构与成藏条件分析[J]. 岩性油气藏, 2009, 21(4): 10-18.
[10] 苏玉平,李建,刘亚峰,韦建波,邓兆元. 贝尔凹陷布达特群潜山分类及其演化史研究[J]. 岩性油气藏, 2009, 21(4): 58-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .