岩性油气藏 ›› 2021, Vol. 33 ›› Issue (6): 165176.doi: 10.12108/yxyqc.20210617
李娟1,2, 郑茜1, 孙松领1, 张斌1, 陈广坡1, 何巍巍1, 韩乾凤1
LI Juan1,2, ZHENG Xi1, SUN Songling1, ZHANG Bin1, CHEN Guangpo1, HE Weiwei1, HAN Qianfeng1
摘要: 以海拉尔盆地贝尔凹陷变质碎屑岩基岩为例,基于测井、地震及测试生产数据,考虑岩性控储因素与基岩潜山的纵向分带等特征,应用综合概率法获取测井储层因子定量表征裂缝-孔隙型储层,结合地震波形指示反演预测裂缝-孔隙型储层分布。结果表明,综合概率法获得的测井储层因子较单一电阻率模型能更好反映裂缝-孔隙型储层的发育程度,与基于相控理论的地震波形指示反演方法结合实现基岩潜山裂缝-孔隙型储层的定量预测。当储层预测值大于阈值时,储层发育,值越大,储层发育程度越高;岩性和原始沉积地层的层状特征影响有效储层在剖面上呈现短丘、豆状的准连续层状分布形态。优质储层发育受基岩垂向分带、断裂和构造位置的控制,好储层主要发育在断裂带附近,以及背斜、断背斜、断块等构造高部位。中—弱风化带储层最好,强风化带次之,未风化基岩内幕段局部发育储层。研究结果在变质碎屑岩裂缝-孔隙型储层预测方面有较大的应用推广价值。
中图分类号:
[1] PRICE N J. Fault and joint development in brittle and semi-brittle rock. Oxford:Pergamon Press, 1966:165-172. [2] PEREZ M A, GRECHKA V, MICHELENA R J. Fracture detection in a carbonate reservoir using a variety of seismic methods. Geophysics, 1999, 64(4):1266-1276. [3] 邓攀, 陈孟晋, 杨泳. 分形方法对裂缝性储集层的定量预测研究和评价. 大庆石油地质与开发, 2006, 25(2):18-20. DENG P, CHEN M J, YANG Y. The application of fractal approach to the quantitative estimation research and evaluation of fractured reservoir. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(2):18-20. [4] JENKINS C, OUENES A, ZELLOU A, et al. Quantifying and predicting naturally fractured reservoir behavior with continuous fracture models. AAPG Bulletin, 2009, 93(11):1597-1608. [5] 周新桂, 张林炎, 屈雪峰, 等. 沿河湾探区低渗透储层构造裂缝特征及分布规律定量预测.石油学报, 2009, 30(2):195-200. ZHOU X G, ZHANG L Y, QU X F, et al. Characteristics and quantitative prediction of distribution laws of tectonic fractures of low-permeability reservoirs in Yanhewan area. Acta Petrolei Sinica, 2009, 30(2):195-200. [6] 鞠玮, 侯贵廷, 冯胜斌, 等. 鄂尔多斯盆地庆城-合水地区延长组长63储层构造裂缝定量预测. 地学前缘, 2014, 21(6):310-320. JU W, HOU G T, FENG S B, et al. Quantitative prediction of the Yanchang Formation Chang 63 reservoir tectonic fracture in the Qingcheng-Heshui area, Ordos Basin. Earth Science Frontiers, 2014, 21(6):310-320. [7] 詹彦, 侯贵廷, 孙雄伟, 等. 库车坳陷东部侏罗系砂岩构造裂缝定量预测. 高校地质学报, 2014, 20(2):294-302. ZHAN Y, HOU G T, SUN X W, et al. Quantitative prediction of tectonic fractures of Jurassic sandstones in the eastern Kuche Depression. Geological Journal of China Universities, 2014, 20(2):294-302. [8] 王珂, 戴俊生, 王俊鹏, 等. 塔里木盆地克深2气田储层构造裂缝定量预测. 大地构造与成矿学, 2016, 40(6):1123-1135. WANG K, DAI J S, WANG J P, et al. Distribution of reservoir structural fractures and quantitative prediction of Keshen-2 gas field, Tarim Basin. Geotectonica et Metallogenia, 2016, 40(6):1123-1135. [9] 张继标, 刘士林, 戴俊生, 等. 塔里木盆地玉北地区奥陶系储层构造裂缝定量预测. 地质力学学报, 2019, 25(2):31-40. ZHANG J B, LIU S L, DAI J S, et al. The quantitative prediction of structural fractures in Ordovician reservoir in Yu-bei area, Tarim Basin. Journal of Geomechanics, 2019, 25(2):31-40. [10] 王蓓, 刘向君, 司马立强, 等. 磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用. 岩性油气藏, 2019, 31(2):124-133. WANG B, LIU X J, SIMA L Q, et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application. Lithologic Reservoirs, 2019, 31(2):124-133. [11] 周新桂, 邓宏文, 操成杰, 等. 储层构造裂缝定量预测研究及评价方法. 地球学报, 2003,24(2):79-84. ZHOU X G, DENG H W, CAO C J, et al. The methods for quantitative prediction and evaluation of structural fissures in reservoirs. Acta Geoscientia Sinica, 2003, 24(2):79-84. [12] 徐会永, 冯建伟, 葛玉荣. 致密砂岩储层构造裂缝形成机制及定量预测研究进展. 地质力学学报, 2013, 19(4):377-384. XU H Y, FENG J W, GE Y R. Research progress on mechanism and quantitative prediction of structural fractures in tight-sand reservoirs. Journal of Geomechanics, 2013, 19(4):377-384. [13] 周文, 尹太举, 张亚春, 等. 蚂蚁追踪技术在裂缝预测中的应用:以青西油田下沟组为例.岩性油气藏, 2015, 27(6):111-118. ZHOU W, YIN T J, ZHANG Y C, et al. Application of ant tracking technology to fracture prediction:A case study from Xiagou Formation in Qingxi oilfield. Lithologic Reservoirs, 2015, 27(6):111-118. [14] 王建君, 李井亮, 李林, 等. 基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例. 岩性油气藏, 2020, 32(5):122-132. WANG J J, LI J L, LI L, et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area. Lithologic Reservoirs, 2020, 32(5):122-132. [15] 张璐, 何峰, 陈晓智, 等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征. 岩性油气藏, 2020, 32(2):108-114. ZHANG L, HE F, CHEN X Z, et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control. Lithologic Reservoirs, 2020, 32(2):108-114. [16] 赵才顺, 万欢, 张昊, 等. 纵波方位各向异性正演模拟及叠前裂缝检测应用研究:以鄂尔多斯盆地致密砂岩气区块为例. 地球物理学进展, 2019, 34(1):257-265. ZHAO C S, WAN H, ZHANG H, et al. Research application of the P-wave anisotropy forward modeling and pre-stack fracture detection:Take the tight sandstone gas block in Ordos Basin as an example. Progress in Geophysics(in Chinese), 2019, 34(1):257-265. [17] 贾跃玮, 魏水建, 吕林. 应用地震纵波方位各向异性定量预测火山岩裂缝. 石油物探, 2014, 53(4):477-483. JIA Y W, WEI S J, LYU L. Application of seismic p-wave azimuthal anisotropy in volcanic fracture quantitative prediction. Geophysical Prospecting for Petroleum, 2014, 53(4):477-483. [18] 姜晓宇, 张研, 甘利灯, 等. 花岗岩潜山裂缝地震预测技术. 石油地球物理勘探, 2020, 55(3):694-704. JIANG X Y, ZHANG Y, GAN L D, et al. Seismic techniques for predicting fractures in granite buried hills. Oil Geophysical Prospecting, 2020, 55(3):694-704. [19] 丁燕, 杜启振, Qamar Yasin, 等. 基于深度学习的裂缝预测在S区潜山碳酸盐岩储层中的应用. 石油物探, 2020, 59(2):267-275. DING Y, DU Q Z, QAMAR Y, et al. Fracture prediction based on deep learning:Application to a buried hill carbonate reservoir in the S area. Geophysical Prospecting for Petroleum, 2020, 59(2):267-275. [20] 章惠, 关达, 向雪梅, 等. 川东北元坝东部须四段裂缝型致密砂岩储层预测. 岩性油气藏, 2018, 30(1):133-139. ZHANG H, GUAN D, XIANG X M, et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):133-139. [21] 陈彦虎, 蒋龙聪, 胡俊, 等. 页岩储层裂缝型孔隙定量预测的新方法. 地质科技情报, 2018, 37(1):115-121. CHEN Y H, JIANG L C, HU J, et al. A new method for quantitative prediction of fractured pores in shale gas reservoirs. Geological Science and Technology Information, 2018, 37(1):115-121. [22] 李娟, 孙松领, 陈广坡, 等. 海拉尔盆地浅变质岩潜山岩性控储特征及储层岩性序列识别.岩性油气藏, 2018, 30(4):26-36. LI J, SUN S L, CHEN G P, et al. Controlling of epimetamorphic rock lithology on basement reservoir and identification of lithological sequence of reservoir in Hailar Basin. Lithologic Reservoirs, 2018, 30(4):26-36. [23] 肖小玲, 靳秀菊, 张翔, 等. 基于常规测井与电成像测井多信息融合的裂缝识别.石油地球物理勘探, 2015, 50(3):542-547. XIAO X L, JIN X J, ZHANG X, et al. Fracture identification based on information fusion of conventional logging and electrical imaging logging. Oil Geophysical Prospecting, 2015, 50(3):542-547. [24] SIBBIT A M, FAIVRE Q. The dual laterolog response in fractured rocks. Dalas:SPWLA 26 th Annual Logging Symposium, 1985:17-20. [25] PHILIPPE A P, ROGER N A. In situ measurement of electrical resistivity, formation anisotropy and tectonic context. Lafayette:SPWLA 31th Annual Logging Symposium, 1990:24-27. [26] 陈义国, 赵谦平, 杨文博, 等. 双侧向测井裂缝孔隙模型考察与改进. 大庆石油地质与开发, 2011, 30(4):171-174. CHEN Y G, ZHAO Q P, YANG W B, et al. Examination and improvement of fracture-pore model for dual-lateral logging. Petroleum Geology & Oilfield Development in Daqing, 2011, 30(4):171-174. [27] 李善军, 肖承文, 汪涵明, 等. 裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释. 地球物理学报, 1996, 39(6):845-852. LI S J, XIAO C W, WANG H M, et al. Mathematical model of dual latero-log response to fracture and quantitative interpretation of fracture porosity. Acta Geophysica Sinica, 1996, 39(6):845-852. [28] 杨涛, 乐友喜, 吴勇. 波形指示反演在储层预测中的应用. 地球物理学进展, 2018, 33(2):769-776. YANG T, LE Y X, WU Y. Application of the waveform inversion in reservoir prediction. Progress in Geophysics, 2018, 33(2):769-776. [29] 李亚哲, 王力宝, 郭华军, 等. 基于地震波形指示反演的砂砾岩储层预测:以中拐-玛南地区上乌尔禾组为例. 岩性油气藏, 2019, 31(2):134-142. LI Y Z, WANG L B, GUO H J, et al. Prediction of glutenite reservoir based on seismic waveform indicative inversion:A case study of Upper Urho Formation in Zhongguai-Manan area. Lithologic Reservoirs, 2019, 31(2):134-142. [30] 章雄, 张本健, 梁虹, 等. 波形指示叠前地震反演方法在致密含油薄砂层预测中的应用.物探与化探, 2018, 42(3):120-129. ZHANG X, ZHANG B J, LIANG H, et al. The application of pre-stack inversion based on seismic waveform indicator to the prediction of compact and thin oil-bearing sand layer. Geophysical and Geochemical Exploration, 2018, 42(3):120-129. [31] 胡玮, 齐鹏, 杨江峰, 等. 波形指示反演在超深层致密砂岩薄储层中的应用. 地球物理学进展, 2018, 33(2):620-624. HU W, QI P, YANG J F, et al. Application of seismic motion inversion in identification of tight thin super deep reservoirs. Progress in Geophysics, 2018, 33(2):620-624. [32] 李娟, 卫平生, 石兰亭, 等. 海拉尔盆地贝尔凹陷基岩储集层流体作用机制与成岩改造. 石油勘探与开发, 2020, 47(1):45-56. LI J, WEI P S, SHI L T, et al. Fluid interaction mechanism and diagenetic reformation for basement reservoir, Beier Sag, Hailar Basin, China. Petroleum Exploration and Development, 2020, 47(1):45-56. |
[1] | 李璐萍, 梁金同, 刘四兵, 郭艳波, 李堃宇, 和源, 金九翔. 川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2022, 34(3): 39-48. |
[2] | 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137. |
[3] | 李亚哲, 王力宝, 郭华军, 单祥, 邹志文, 窦洋. 基于地震波形指示反演的砂砾岩储层预测——以中拐-玛南地区上乌尔禾组为例[J]. 岩性油气藏, 2019, 31(2): 134-142. |
[4] | 王伟, 吴奎, 何京, 张金辉, 沈洪涛. 锦州25-1油田优质储层地震响应特征与定量预测[J]. 岩性油气藏, 2018, 30(3): 100-111. |
[5] | 吴海波,李军辉,刘 赫. 海拉尔盆地乌尔逊—贝尔凹陷层序构成样式及油气成藏模式[J]. 岩性油气藏, 2015, 27(5): 155-160. |
[6] | 付 广,吴 伟. 乌尔逊—贝尔凹陷油气成藏模式及其主控因素[J]. 岩性油气藏, 2015, 27(1): 14-20. |
[7] | 吴兴宁,吕玉珍,田继强,郭永军. 冀中坳陷碳酸盐岩潜山内幕盖层特征与评价[J]. 岩性油气藏, 2011, 23(3): 49-54. |
[8] | 孙勤华,刘晓梅,刘建新,张继娟. 利用波形分析技术半定量预测塔中碳酸盐岩储层[J]. 岩性油气藏, 2010, 22(1): 101-103. |
[9] | 郑荣才,胡诚,董霞. 辽西凹陷古潜山内幕结构与成藏条件分析[J]. 岩性油气藏, 2009, 21(4): 10-18. |
[10] | 苏玉平,李建,刘亚峰,韦建波,邓兆元. 贝尔凹陷布达特群潜山分类及其演化史研究[J]. 岩性油气藏, 2009, 21(4): 58-62. |
|