岩性油气藏 ›› 2023, Vol. 35 ›› Issue (1): 36–48.doi: 10.12108/yxyqc.20230104

• 地质勘探 • 上一篇    下一篇

莺歌海盆地中央坳陷带成藏体系的盖层评价及控藏作用

范彩伟1, 贾茹2, 柳波2, 付晓飞2, 侯静娴1, 靳叶军2   

  1. 1. 中海石油(中国)有限公司 湛江分公司, 广东 湛江 524057;
    2. 东北石油大学 非常规油气研究院, 黑龙江 大庆 163318
  • 收稿日期:2021-11-25 修回日期:2022-03-20 出版日期:2023-01-01 发布日期:2023-01-06
  • 第一作者:范彩伟(1973-),男,硕士,教授级高级工程师,主要从事石油地质勘探方面的研究工作。地址:(524057)广东省湛江市中海石油(中国)有限公司湛江分公司研究院。Email:fancw@cnooc.com.cn
  • 通信作者: 贾茹(1988-),女,博士,副教授,主要从事油气藏保存条件方面的教学和研究工作。Email:jiaru_dq@163.com。
  • 基金资助:
    国家自然科学基金“高温高压背景下重力流岩性圈闭油气保存条件研究”(编号: 42002152)资助

Caprock evaluation and its reservoir control of different accumulation systems in central depression zone of Yinggehai Basin

FAN Caiwei1, JIA Ru2, LIU Bo2, FU Xiaofei2, HOU Jingxian1, JIN Yejun2   

  1. 1. Zhanjiang Branch of CNOOC (China) Co., Ltd., Zhanjiang 524057, Guangdong, China;
    2. Institute of Unconventional Oil & Gas, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Received:2021-11-25 Revised:2022-03-20 Online:2023-01-01 Published:2023-01-06

摘要: 莺歌海盆地是我国南海重要的天然气探区。通过对莺歌海盆地中央坳陷带不同成藏体系典型气藏和含气构造的精细解剖,评价了盖层的有效性及控制因素,并分析了盖层对天然气成藏的控制作用。研究结果表明: ①莺歌海盆地中央坳陷带浅层和超浅层成藏体系中,盖层的封盖有效性受到盖层、底辟构造及底辟构造活动伴生断裂的共同控制;中深层成藏体系中普遍存在异常高流体压力,且断裂不太发育,盖层水力封闭是控制油气差异富集的关键因素。②浅层和超浅层成藏体系内,脆性盖层保持封盖有效性的临界断接厚度为86~98 m;中深层成藏体系内,盖层的封盖有效性可以通过水力破裂压力系数进行评价,当系数大于 1 时,意味着盖层已发生破裂或具有极强的水力破裂的风险。③整体上中央坳陷带超压诱发的水力破裂是中深层盖层封闭失效的根本原因,深层天然气通过水力破裂通道运移至浅层,最终经断裂调整至超浅层成藏,气源充足的条件下,超浅层及浅层气藏主要集中分布在底辟的顶部,而中深层气藏主要集中分布于底辟翼部及斜坡区。

关键词: 盖层, 超压, 突破压力, 断裂, 水力破裂, 控藏作用, 中央坳陷带, 莺歌海盆地

Abstract: Yinggehai Basin is an important natural gas exploration area in the South China Sea. Based on detailed analysis of typical gas reservoirs and gas-bearing structures of different accumulation systems in the central depression of Yinggehai Basin,the effectiveness and controlling factors of caprocks were evaluated,and the controlling effects of caprocks on natural gas accumulation were analyzed. The results show that: (1) In the ultra-shallow and shallow accumulation systems in the central depression zone of Yinggehai Basin,the sealing of caprocks is controlled by the caprocks,the diapir structure and the faults associated with the activity of the diapir structure. In the middle-deep accumulation system,under the background of abnormally high fluid pressure and the absence of faults,hydraulic sealing of caprocks is the key factor controlling differential enrichment of oil and gas. (2) The critical juxtaposition thickness of the brittle caprocks to maintain the sealing effectiveness is 86-98 m in the ultrashallow and shallow accumulation systems. The effectiveness of the caprocks in the middle-deep accumulation system can be evaluated by the hydraulic fracturing pressure coefficient. When the value is greater than 1,it means that the caprocks have ruptured or have a strong risk of hydraulic fracturing. (3) From the overall view of the central depression,hydraulic fracturing induced by overpressure is the fundamental cause of sealing failure in mid-deep caprocks. Deep natural gas migrates to shallow layer through hydraulic fracturing channel and finally to the ultra-shallow reservoir through the faults. Therefore,under the condition of sufficient gas source,ultra-shallow and shallow gas reservoirs are mainly distributed at the top of the diapir,while middle-deep gas reservoirs are mainly concentrated in the diapir wing and slope areas.

Key words: caprock, overpressure, breakthrough pressure, fault, hydraulic fracturing, reservoir control, central depression zone, Yinggehai Basin

中图分类号: 

  • TE122.2
[1] HUNT J M. Generation and migration of petroleum from abnormal pressured fluid compartments[J]. AAPG Bulletin,1990,74 (1): 1-12.
[2] HAO Fang,ZOU Huayao,GONG Zaisheng,et al. Hierarchies of overpressure retardation of organic matter maturation: Case studies from petroleum basins in China[J]. AAPG Bulletin,2007, 91 (10): 1467-1498.
[3] BLOCH S,LANDER R H,BONNELL L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability[J]. AAPG Bulletin,2002,86 (2): 301-328.
[4] CAPUANO R M. Evidence of fluid flow in microfractures in geopressured shale[J]. AAPG Bulletin,1993,77 (9): 1303-1314.
[5] REVIL A,CATHLES L M. Fluid transport by solitary waves along growing faults: A field example from the Sourch Eugene Island Basin,Gulf of Mexico[J]. Earth and Planetary Science Letters,2002,202 (2): 321-335.
[6] 李传亮,朱苏阳,刘东华. 盖层封堵油气的机理研究[J]. 岩性油气藏,2019,31 (1): 12-19. LI Chuanliang,ZHU Suyang,LIU Donghua. Mechanism of sealing oil and gas with cap-rocks[J]. Lithologic Reservoirs,2019, 31 (1): 12-19.
[7] CAILLET G. The caprock of the Snorre Field,Norway: A possible leakage by hydraulic fracturing[J]. Marine and Petroleum Geology,1993,10 (1): 42-50.
[8] ANDERSON R N,HE W,HOBART M A,et al. Active fluid flow in the Eugene Island area,offshore Louisiana[J]. The Leading Edge,1991,10 (4): 12-17.
[9] 郝芳,刘建章,邹华耀,等. 莺歌海-琼东南盆地超压层系油气聚散机理浅析[J]. 地学前缘,2015,22 (1): 169-180. HAO Fang,LIU Jianzhang,ZOU Huayao,et al. Mechanisms of natural gas accumulation and leakage in the overpressured sequences in the Yinggehai and Qiongdongnan basins,offshore South China Sea[J]. Earth Science Frontiers,2015,22 (1): 169-180.
[10] COSGROVE J W. The expression of hydraulic fracturing in rocks and sediments[J]. Special Publications of Geological Society of London,1995,92 (1): 187-196.
[11] ZUHLSDOREF L,SPIESS V. Three-dimensional seismic characterization of a venting site reveals compelling indications of natural hydraulic fracturing[J]. Geology,2004,32 (2): 101-104.
[12] LACAZETTE A,ENGELDER T. Natural hydraulic fracturing[C]. Loen: Proceedings of the International Symposium on Rock Joints,1990: 35-44.
[13] 赵宝峰,陈红汉,孔令涛,等莺歌海盆地流体垂向输导体系及其对天然气成藏控制作用[J]. 地球科学——中国地质大学学报,2014,39 (9): 1323-1332. ZHAO Baofeng,CHEN Honghan,KONG Lingtao,et al. Vertical migration system and its control on natural gas accumulation in Yinggehai Basin[J]. Earth Science-Journal of China University of Geosciences,2014,39 (9): 1323-1332.
[14] 李伟,刘平,艾能平,等. 莺歌海盆地乐东地区中深层储层发育特征及成因机理[J]. 岩性油气藏,2020,32 (1): 19-26. LI Wei,LIU Ping,AI Nengping,et al. Development characteristics and genetic mechanism of mid-deep reservoirs in Ledong area, Yinggehai Basin[J]. Lithologic Reservoirs,2020,32 (1): 19-26.
[15] 谢玉洪. 莺歌海盆地高温高压盖层封盖能力定量评价[J]. 地球科学,2019,44 (8): 2579-2589. XIE Yuhong. Quantitative evaluation of sealing capacity of high temperature and pressure caprocks in Yinggehai Basin[J]. Earth Science,2019,44 (8): 2579-2589.
[16] 韩光明,周家雄,裴健翔,等. 莺歌海盆地底辟本质及其与天然气成藏关系[J]. 岩性油气藏,2012,24 (5): 27-31. HAN Guangming,ZHOU Jiaxiong,PEI Jianxiang,et al. Essence of diapir and its relationship with natural gas accumulation in Yinggehai Basin[J]. Lithologic Reservoirs,2012,24 (5): 27-31.
[17] 刘为,杨希冰,张秀苹,等. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏,2019,31 (2): 75-82. LIU Wei,YANG Xibing,ZHANG Xiuping,et al. Characteristics and controlling factors of gravity flow deposits of Huangliu Formation in eastern Yinggehai Basin[J]. Lithologic Reservoirs,2019,31 (2): 75-82.
[18] 郝芳,邹华耀,黄保家. 莺歌海盆地天然气生成模式及其成藏流体响应[J]. 中国科学 (D辑),2002,32 (11): 889-895. HAO Fang,ZOU Huayao,HUANG Baojia. Natural gas generation model and reservoir-forming fluid response in Yinggehai Basin[J]. Science in China (Series D),2002,32 (11): 889-895.
[19] 马启富,陈斯忠,张启明,等. 超压盆地与油气分布[M]. 北京: 地质出版社,2000. MA Qifu,CHEN Sizhong,ZHANG Qiming,et al. Overpressure basins and oil and gas distribution[M]. Beijing: Geological Publishing House,2000.
[20] 殷秀兰,李思田,杨计海. 底辟区构造分析及热流体运移模拟: 以莺歌海盆地DF1-1为例[J]. 地学前缘,2000,7 (3): 81-89. YIN Xiulan,LI Sitian,YANG Jihai. Study on fault system and simulation of driving fluid migration in DF1-1 diapir,Yinggehai Basin,South China Sea[J]. Earth Science Frontiers,2000,7 (3): 81-89.
[21] 童传新,王振峰,李绪深. 莺歌海盆地东方1-1气田成藏条件及其启示[J].天然气工业,2012,32 (8): 11-26. TONG Chuanxin,WANG Zhenfeng,LI Xushen. Accumulation conditions and enlightenment of DF 1-1 gas field in Yinggehai Basin[J]. Natural Gas Industry,2012,32 (8): 11-26.
[22] 贾茹. 莺琼盆地盖层完整性及与天然气成藏[D]. 大庆: 东北石油大学,2018. JIA Ru. The integrity of caprocks and gas accumulation in Yingqiong Basin[D]. Daqing: Northeast Petroleum University,2018.
[23] 付广,庞雄奇. 利用声波时差资料研究泥岩盖层封闭能力的方法[J]. 石油地球物理勘探,1996,31 (4): 521-529. FU Guang,PANG Xiongqi. Method for researching on mudcaprock sealing ability with the use of interval transit times[J]. Oil Geophysical Prospecting,1996,31 (4): 521-529.
[24] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏,2008,20 (1): 21-26. FU Guang,LIU Bo,LÜ Yanfang. Comprehensive evaluation method for sealing ability of mudstone caprock to gas in each phase[J]. Lithologic Reservoirs,2008,20 (1): 21-26.
[25] 冯冲,黄志龙,童传新,等. 莺歌海盆地莺歌海组二段泥岩盖层封闭性综合评价[J]. 地球科学与环境学报,2011,33 (4): 373-377. FENG Chong,HUANG Zhilong,TONG Chuanxin,et al. Comprehensive evaluation on the sealing ability of mudstone cap rock in member 2 of Yinggehai Formation of Yinggehai Basin[J]. Journal of Earth Science and Environment,2011,33 (4): 373-377.
[26] 汪洋,裴健翔,刘亿. 莺歌海盆地东方区高温超压气藏盖层封盖机制[J]. 华南地质与矿产,2016,32 (4): 397-405. WANG Yang,PEI Jianxiang,LIU Yi. Caprock sealing mechanism of high-temperature and overpressure gas reservoirs in the Dongfang block,Yinggehai Basin,South China[J]. Geology and Mineral Resources of South China,2016,32 (4): 397-405.
[27] JAEGER J C. Extension failures in rocks subject to fluid pressure[J]. Journal of Geophysical Research,1963,68 (21): 6066-6067.
[28] MAGARA K. Reevaluation of montmorillonite dehydration as cause of abnormal pressure and hydrocarbon migration[J]. AAPG Bulletin,1975,59 (2): 292-302.
[29] SIBSON R H. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural Geology,1996,18 (8): 1031-1042.
[30] MILDREN S D,HILLIS R R,DEWHURST D N,et al. FAST: A new technique for geomechanical assessment of the risk of reactivation-related breach of fault seals[J]. AAPG Hedberg Series,2005 (2): 73-85.
[31] 付晓飞,吴桐,吕延防,等. 油气藏盖层封闭性研究现状及未来发展趋势[J]. 石油与天然气地质,2018,39 (3): 454-471. FU Xiaofei,WU Tong,LÜ Yanfang,et al. Research status and development trend of the reservoir caprock sealing properties[J]. Oil & Gas Geology,2018,39 (3): 454-471.
[32] 付晓飞,贾茹,王海学,等. 断层-盖层封闭性定量评价: 以塔里木盆地库车坳陷大北-克拉苏构造带为例[J]. 石油勘探与开发,2015,42 (3): 300-309. FU Xiaofei,JIA Ru,WANG Haixue,et al. Quantitative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa Derpession,Tarim Basin,NW China[J]. Petroleum Exploration and Development,2015,42 (3): 300-309.
[33] 吕延防,万军,沙子萱,等. 被断裂破坏的盖层封闭能力评价方法及其应用[J]. 地质科学,2008,43 (1): 162-174. LÜ Yanfang,WAN Jun,SHA Zixuan,et al. Evaluation method for seal ability of cap rock destructed by faulting and its application[J]. Chinese Journal of Geology,2008,43 (1): 162-174.
[34] 范彩伟. 莺-琼盆地高压成因输导体系特征、识别及其成藏过程[J]. 石油与天然气地质,2018,39 (2): 254-267. FAN Caiwei. The identification and characteristics of migration system induced by high pressure,and its hydrocarbon accumulation process in the Yingqiong Basin[J]. Oil & Gas Geology, 2018,39 (2): 254-267.
[35] JIA Ru,FAN Caiwei,LIU Bo,et al. Analysis of natural hydraulic fracture risk of mudstone cap rocks in XD block of central depression in Yinggehai Basin,South China Sea[J]. Energies, 2021,14 (14): 1-12.
[36] PHILLIPS W J. Hydraulic fracturing and mineralization[J]. Journal of the Geological Society,1972,128 (4): 337-359.
[37] ZOBACK M D,Barton C A,BRUDY M,et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences,2003, 40 (7/8): 1049-1076.
[38] TINGAY M R,HILLI R R,MORLEY C K,et al. Present-day stress and neotectonics of Brunei: Implications for petroleum exploration and production[J]. AAPG Bulletin,2009,93 (1): 75-100.
[39] MCGARR A,Gay N C. State of stress in the earth's crust[J]. Annual Review of Earth and Planetary Sciences,1978,6: 405.
[40] HUBBERT M K,WILLIS D G. Mechanics of hydraulic fracturing[J]. Transactions of Society of Petroleum Engineers of AIME, 1957,210: 153-168.
[41] GAARENSTROOM L,TROMP R A J,BRANDENBURG A M. Overpressures in the Central North Sea: Implications for trap integrity and drilling safety[R]. Petroleum Geology Conference Series,Geological Society of London,1993.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[3] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[4] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[5] 黄向胜, 闫琢玉, 张东峰, 黄合庭, 罗程飞. 琼东南盆地Ⅱ号断裂带新生界多期热流体活动与天然气运聚特征[J]. 岩性油气藏, 2024, 36(5): 67-76.
[6] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[7] 卢科良, 吴康军, 李志军, 孙永河, 徐少华, 梁锋, 刘露, 李爽. 川中古隆起北斜坡寒武系龙王庙组油气成藏特征及演化模式[J]. 岩性油气藏, 2024, 36(4): 159-168.
[8] 董柔, 李坤, 殷际航, 薛煜恒, 江涛, 徐国盛. 渤东凹陷新生代伸展-走滑叠合断裂时空差异演化模式及控藏效应[J]. 岩性油气藏, 2024, 36(3): 106-116.
[9] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[10] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[11] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[12] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[13] 窦立荣, 刘化清, 李博, 齐雯, 孙东, 尹路, 韩双彪. 全球天然氢气勘探开发利用进展及中国的勘探前景[J]. 岩性油气藏, 2024, 36(2): 1-14.
[14] 洪国良, 王红军, 祝厚勤, 白振华, 王雯雯. 南苏门答腊盆地J区块中新统Gumai组岩性油气藏成藏条件及有利区带[J]. 岩性油气藏, 2023, 35(6): 138-146.
[15] 马峰, 庞文珠, 赵文光, 张斌, 赵艳军, 薛罗, 郑茜, 陈彬滔. 南苏丹境内裂谷盆地源上构造-岩性油藏成藏主控因素与成藏模式[J]. 岩性油气藏, 2023, 35(6): 92-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .