岩性油气藏 ›› 2024, Vol. 36 ›› Issue (1): 121–135.doi: 10.12108/yxyqc.20240112

• 地质勘探 • 上一篇    下一篇

四川盆地及周缘地区晚奥陶世岩相古地理演化

孙汉骁1, 邢凤存1,2, 谢武仁3, 钱红杉4   

  1. 1. 成都理工大学 沉积地质研究院, 成都 610059;
    2. 成都理工大学 油气藏地质及开发工程国家重点实验室, 成都 610059;
    3. 中国石油勘探开发研究院, 北京 100083;
    4. 中国石油西南油气田公司 勘探开发研究院, 成都 610041
  • 收稿日期:2023-02-04 修回日期:2023-02-26 出版日期:2024-01-01 发布日期:2024-01-02
  • 第一作者:孙汉骁(1996-),男,成都理工大学在读硕士研究生,研究方向为沉积学。地址:(610059)四川省成都市成华区二仙桥东三路1号成都理工大学。Email:1018851410@qq.com。
  • 通信作者: 邢凤存(1978-),男,博士,副教授,主要从事储层沉积学、层序地层学等方面的教学与研究工作。Email:xingfengcun2012@cdut.cn。
  • 基金资助:
    国家自然科学基金“川东北早三叠世飞仙关期同期多排碳酸盐台缘带不对称沉积结构及成因”(编号:41302089)和“川北江油-剑阁地区早三叠世近源重力流滑塌砾石早期白云石化记录及其地质意义”(编号:41672103)联合资助。

Lithofacies paleogeography evolution of Late Ordovician in Sichuan Basin and its surrounding areas

SUN Hanxiao1, XING Fengcun1,2, XIE Wuren3, QIAN Hongshan4   

  1. 1. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    3. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    4. Research Institute of Exploration and Development, PetroChina Southwest Oil and Gas Field Company, Chengdu 610041, China
  • Received:2023-02-04 Revised:2023-02-26 Online:2024-01-01 Published:2024-01-02

摘要: 综合利用野外露头、岩心、钻测井等资料,对四川盆地及周缘地区晚奥陶世岩相古地理演化过程进行了描述和对比,并探讨了其主控因素。研究结果表明: ①加里东运动早期拉张—伸展作用导致四川盆地周缘坳陷加深,其后扬子板块和华夏地块碰撞挤压,形成了晚奥陶世以上扬子地区为中心,西北、西部、南部三面环隆的古地理格局。②四川盆地及周缘地区晚奥陶世可划分出(混积)滨岸、碳酸盐缓坡、(混积)陆棚相等沉积相类型。宝塔组—临湘组主要发育碳酸盐缓坡相;五峰组沉积期海侵达到高峰,碳酸盐缓坡被淹没,发育(混积)陆棚相深水黑色页岩;观音桥组沉积期发生的海退导致大部分地区由深水陆棚转为浅海陆棚亚相;各时期古隆起周缘均有(混积)滨岸相发育,受物源影响部分地区具有混合沉积特征。③研究区晚奥陶世岩相古地理格局受构造运动、海平面变化和古气候等因素综合控制,在沉积相平面展布和垂向演化上均有体现。

关键词: (混积)滨岸, 碳酸盐缓坡, (混积)陆棚, 岩相古地理, 沉积演化, 宝塔组-临湘组, 五峰组, 观音桥组, 晚奥陶世, 四川盆地

Abstract: Based on outcrops, cores, drilling and logging data, the evolution process of Lithofacies paleogeography of Late Ordovician in Sichuan Basin and its surrounding areas was described and compared, and the main controlling factors were discussed. The results show that:(1) The early Caledonian tension-extension led to the deepening of the depression around the study area, and then the collision and extrusion of the Yangtze plate and Cathaysia block formed the paleogeographic pattern of the upper Late Ordovician Yangtze region as the center, surrounded by uplifts on the northwest, west and south sides.(2) The Late Ordovician in Sichuan Basin and its surrounding areas can be divided into(mixed) shore, carbonate gentle slope and(mixed) shelf sedimentary facies. The Baota Formation-Linxiang Formation mainly developed carbonate gentle slope facies. At the transgressive peak of Wufeng Formation, the carbonate gentle slope was submerged and developed(mixed) shelf deep water black shale. The regressions of Guanyinqiao Formation led to the transition from deep shelf to shallow shelf subfacies in most areas. There are(mixed) shore facies developed in the periphery of paleo-uplift in all periods, and some areas affected by provenance have mixed sedimentary characteristics.(3) The lithofacies paleogeographic pattern of the Late Ordovician in the study area is controlled by multiple factors such as tectonic movement, sea level change and paleoclimate, which is reflected in the plane distribution and vertical evolution of sedimentary facies.

Key words: (mixed)shore, carbonate gentle slope, (mixed)shelf, lithofacies paleogeography, sedimentary evolution, Baota Formation-Linxiang Formation, Wufeng Formation, Guanyinqiao Formation, Late Ordovician, Sichuan Basin

中图分类号: 

  • TE122.2
[1] 戎嘉余, 詹仁斌, 许红根, 等. 华夏古陆于奥陶-志留纪之交的扩展证据和机制探索[J]. 中国科学:地球科学, 2010, 40(1):1-17. RONG Jiayu, ZHAN Renbin, XU Honggen, et al. Expansion of the Cathaysian Oldland through the Ordovican-Silurian transition:Emerging evidence and possible dynamics[J]. Science China:Earth Sciences, 2010, 40(1):1-17.
[2] 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学:地球科学, 2013, 43(10):1553-1582. ZHANG Guowei, GUO Anlin, WANG Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China:Earth Sciences, 2013, 43(10):1553-1582.
[3] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6):1-23. PAN Guitang, LU Songnian, XIAO Qinghui, et al. Division of tectonic stages and tectonic evolution in China[J]. Earth Science Frontiers, 2016, 23(6):1-23.
[4] 聂海宽, 金之钧, 马鑫, 等. 四川盆地及邻区上奥陶统五峰组-下志留统龙马溪组底部笔石带及沉积特征[J]. 石油学报, 2017, 38(2):160-174. NIE Haikuan, JIN Zhijun, MA Xin, et al. Graptolites zone and sedimentary characteristics of Upper Ordovician Wufeng FormationLower Silurian Longmaxi Formation in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 2017, 38(2):160-174.
[5] 戎嘉余, 黄冰. 华南奥陶纪末生物大灭绝的肇端标志-腕足动物稀少贝组合(Manosia Assemblage)及其穿时分布[J]. 地质学报, 2019, 93(3):509-527. RONG Jiayu, HUANG Bing. An indicator of the onset of the end Ordovician mass extinction in South China:The Manosia brachiopod assemblage and its diachronous distribution[J]. Acta Geologica Sinica, 2019, 93(3):509-527.
[6] 李皎, 何登发, 梅庆华. 四川盆地及邻区奥陶纪构造-沉积环境与原型盆地演化[J]. 石油学报, 2015, 36(4):427-445. LI Jiao, HE Dengfa, MEI Qinghua. Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2015, 36(4):427-445.
[7] 赵明胜, 王约. 上扬子海南缘晚奥陶世赫南特期沉积相特征及海平面变化[J]. 地球学报, 2018, 39(2):189-200. ZHAO Mingsheng, WANG Yue. Sedimentary facies features and sea-level fluctuation during the Upper Ordovician Hirnantian Period on the southern margin of the Upper Yangtze Sea[J]. Acta Geoscientica Sinica, 2018, 39(2):189-200.
[8] 刘伟, 洪海涛, 徐安娜, 等. 四川盆地奥陶系岩相古地理与勘探潜力[J]. 海相油气地质, 2017, 22(4):1-10. LIU Wei, HONG Haitao, XU Anna, et al. Lithofacies paleogeography and exploration potential of Ordovician in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2017, 22(4):1-10.
[9] 牟传龙, 葛祥英, 许效松, 等. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J]. 古地理学报, 2014, 16(4):427-440. MOU Chuanlong, GE Xiangying, XU Xiaosong, et al. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze region[J]. Journal of Palaeogeography(Chinese Edition), 2014, 16(4):427-440.
[10] 陈超. 川南-黔北地区晚奥陶世-早志留世地史转折期古海洋、古气候演变及烃源岩成因机制研究[D]. 武汉:中国地质大学(武汉), 2018. CHEN Chao. Research on paleoceanography, paleoclimate and formation mechanism of source rock during geologic transition period from Late Ordovician to Early Silurian in southern Sichuan Province-northern Guizhou Province, South China[D]. Wuhan:China University of Geosciences(Wuhan), 2018.
[11] 文华国, 梁金同, 周刚, 等. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带[J]. 岩性油气藏, 2022, 34(2):1-16. WEN Huaguo, LIANG Jintong, ZHOU Gang, et al. Sequencebased lithofacies paleogeography and favorable natural gas exploration areas of Cambrian Xixiangchi Formation in Sichuan Basin and its periphery[J]. Lithologic Reservoirs, 2022, 34(2):1-16.
[12] 龚大兴, 林金辉, 唐云凤, 等. 上扬子地台北缘古生界海相烃源岩有机地球化学特征[J]. 岩性油气藏, 2010, 22(3):31-37. GONG Daxing, LIN Jinhui, TANG Yunfeng, et al. Organic geochemical characteristics of Paleozoic marine source rocks in northern margin of Upper Yangtze Platform[J]. Lithologic Reservoirs, 2010, 22(3):31-37.
[13] 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J].石油与天然气地质, 2022, 43(2):353-364. WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2):353-364.
[14] 孙自明, 张荣强, 孙炜, 等.四川盆地东部海相下组合油气勘探领域与有利勘探方向[J]. 现代地质, 2021, 35(3):798-806. SUN Ziming, ZHANG Rongqiang, SUN Wei, et al. Petroleum exploration domains and favorable directions of the lower marine assemblage in eastern Sichuan Basin[J]. Geoscience, 2021, 35(3):798-806.
[15] 周文, 徐浩, 余谦, 等. 四川盆地及其周缘五峰组-龙马溪组与筇竹寺组页岩含气性差异及成因[J]. 岩性油气藏, 2016, 28(5):18-25. ZHOU Wen, XU Hao, YU Qian, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016, 28(5):18-25.
[16] 舒逸, 陆永潮, 刘占红, 等. 海相页岩中斑脱岩发育特征及对页岩储层品质的影响:以涪陵地区五峰组-龙马溪组一段为例[J]. 石油学报, 2017, 38(12):1371-1380. SHU Yi,LU Yongchao,LIU Zhanhong,et al. Development characteristics of bentonite in marine shale and its effect on shale reservoir quality:A case study of Wufeng Formation to member 1 of Longmaxi Formation, Fuling area[J]. Acta Petrolei Sinica, 2017, 38(12):1371-1380.
[17] 何贵松, 何希鹏, 高玉巧, 等. 中国南方3套海相页岩气成藏条件分析[J]. 岩性油气藏, 2019, 31(1):57-68. HE Guisong, HE Xipeng, GAO Yuqiao, et al. Analysis of accumulation conditions of three sets of marine shale gas in southern China[J]. Lithologic Reservoirs, 2019, 31(1):57-68.
[18] 刘树根, 孙玮, 李智武, 等. 四川叠合盆地海相碳酸盐岩油气分布特征及其构造主控因素[J]. 岩性油气藏, 2016, 28(5):1-17. LIU Shugen, SUN Wei, LI Zhiwu, et al. Distribution characteristics of marine carbonate reservoirs and their tectonic controlling factors across the Sichuan superimposed basin[J]. Lithologic Reservoirs, 2016, 28(5):1-17.
[19] 邢凤存, 侯明才, 林良彪, 等. 四川盆地晚震旦世-早寒武世构造运动记录及动力学成因讨论[J]. 地学前缘, 2015, 22(1):115-125. XING Fengcun, HOU Mingcai, LIN Liangbiao, et al. The records and its dynamic genesis discussion of tectonic movement during the Late Sinian and the Early Cambrian of Sichuan Basin[J]. Earth Science Frontiers, 2015, 22(1):115-125.
[20] 陈安清, 侯明才, 林良彪, 等. 上扬子地区寒武纪岩相古地理:对中国小陆块海相盆地演化特点及其控藏效应的启示[J]. 沉积与特提斯地质, 2020, 40(3):38-47. CHEN Anqing, HOU Mingcai, LIN Liangbiao, et al. Cambrian lithofacies paleogeographic characteristics of the Upper Yangtze block:Implications for the marine basin evolution and hydrocarbon accumulation of small-scale tectonic blocks in China[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(3):38-47.
[21] 谷明峰, 李文正, 邹倩, 等. 四川盆地寒武系洗象池组岩相古地理及储层特征[J]. 海相油气地质, 2020, 25(2):162-170. GU Mingfeng, LI Wenzheng, ZOU Qian, et al. Lithofacies palaeogeography and reservoir characteristics of the Cambrian Xixiangchi Formation in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(2):162-170.
[22] 邢凤存, 胡华蕊, 侯明才, 等. 构造和古地理控制下的碳酸盐岩储集体旋回和集群性探讨:以四川盆地为例[J]. 地球科学, 2018, 43(10):3540-3552. XING Fengcun, HU Huarui, HOU Mingcai, et al. Carbonate reservoirs cycles and assemblages under the tectonic and palaeogeography control:A case study from Sichuan Basin[J]. Earth Science, 2018, 43(10):3540-3552.
[23] 周恳恳, 许效松. 扬子陆块西部古隆起演化及其对郁南运动的反映[J]. 地质论评, 2016, 62(5):1125-1133. ZHOU Kenken, XU Xiaosong. Evolution of paleo-uplifts in the western Upper Yangtze craton and its reflection on Yunan Orogeny[J]. Geological Review, 2016, 62(5):1125-1133.
[24] 谢尚克, 汪正江, 王剑. 黔东北地区晚奥陶世岩相古地理[J]. 古地理学报, 2011, 13(5):539-549. XIE Shangke, WANG Zhengjiang, WANG Jian. Lithofacies palaeogeography of the Late Ordovician in northeastern Guizhou Province[J]. Journal of Palaeogeography, 2011, 13(5):539-549.
[25] 杨威, 谢武仁, 魏国齐, 等. 四川盆地寒武纪-奥陶纪层序岩相古地理、有利储层展布与勘探区带[J]. 石油学报, 2012, 33(增刊2):21-34. YANG Wei, XIE Wuren, WEI Guoqi, et al. Sequence lithofacies paleogeography, favorable reservoir distribution and exploration zones of the Cambrian and Ordovician in Sichuan Basin,China[J]. Acta Petrolei Sinica, 2012, 33(Suppl 2):21-34.
[26] 钱红杉. 上扬子北缘宝塔组龟裂纹灰岩沉积特征及其时空分布[D]. 成都:成都理工大学, 2021. QIAN Hongshan. Sedimentary characteristics and spatial and temporal distribution of turtle crack limestone of Pagoda Formation on the northern margin of the Upper Yangtze[D]. Chengdu:Chengdu University of Technology, 2021.
[27] 梁狄刚, 郭彤楼, 边立曾, 等.中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009, 14(2):1-19. LIANG Digang, GUO Tonglou, BIAN Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China(Part 3):Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J]. Marine Petroleum Geology, 2009, 14(2):1-19.
[28] 胡华蕊, 邢凤存, 侯明才, 等. 上扬子奥陶纪层序岩相古地理重建及油气勘探启示[J]. 地球科学, 2019, 44(3):798-809. HU Huarui, XING Fengcun, HOU Mingcai, et al. Ordovician sequence and lithofacies paleogeography reconstruction in Upper Yangtze region and its implications for oil and gas exploration[J]. Earth Science, 2019, 44(3):798-809.
[29] 熊国庆, 王剑, 李园园, 等. 大巴山地区晚奥陶世-早志留世"宜昌上升" 的沉积响应[J]. 地质论评, 2019, 65(3):533-550. XIONG Guoqing, WANG Jian, LI Yuanyuan, et al. Sedimentary response to Late Ordovician-Early Silurian Yichang uplift in Daba Mountains area[J]. Geological Review, 2019, 65(3):533-550.
[30] 戎嘉余, 陈旭, 王怿, 等. 奥陶-志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学:地球科学, 2011, 41(10):1407-1415. RONG Jiayu, CHEN Xu, WANG Yi, et al. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition:Evidence and implications(in Chinese)[J]. Scientia Sinica Terrae, 2011, 41(10):1407-1415.
[31] 邓新, 杨坤光, 刘彦良, 等. 黔中隆起性质及其构造演化[J]. 地学前缘, 2010, 17(3):79-89. DENG Xin, YANG Kunguang, LIU Yanliang, et al. Characteristics and tectonic evolution of Qianzhong Uplift[J]. Earth Science Frontiers, 2010, 17(3):79-89.
[32] LEZIN C, ANDREU B, PELLENARD P, et al. Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe[J]. Chemical Geology, 2013, 341:1-15.
[33] CHEN Chao, MOU Chuanlong, ZHOU Kenken, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Geology, 2016, 76:159-175.
[34] 陈思, 曾敏, 田景春, 等. 扬子台地西南部奥陶系宝塔组底部含鲕绿泥石灰岩成因意义[J]. 地球科学, 2021, 46(9):3107-3122. CHEN Si, ZENG Min, TIAN Jingchun, et al. Chamosite-ooidal limestones at the bottom of Ordovician Pagoda Formation in the southwestern Yangtze Platform:Genesis and paleo environmental implications[J]. Earth Science, 2021, 46(9):3107-3122.
[35] YAN Detian, CHEN Daizhao, WANG Jianguo, et al. Largescale climatic fluctuations in the latest Ordovician on the Yangtze block, south China[J]. Geology, 2010, 38(7):599-602.
[36] 王玉满, 陈波, 李新景, 等. 川东北地区下志留统龙马溪组上升洋流相页岩沉积特征[J]. 石油学报, 2018, 39(10):1092-1102. WANG Yuman, CHEN Bo, LI Xinjing, et al. Sedimentary characteristics of upwelling facies shale in Lower Silurian Longmaxi Formation, northeast Sichuan area[J]. Acta Petrolei Sinica, 2018, 39(10):1092-1102.
[37] 肖斌, 刘树根, 冉波, 等. 四川盆地北缘五峰组和龙马溪组沉积构造格局研究[J]. 地球科学, 2021, 46(7):2449-2465. XIAO Bin, LIU Shugen, RAN Bo, et al. Study on sedimentary tectonic pattern of Wufeng Formation and Longmaxi Formation in the northern margin of Sichuan Basin, South China[J]. Earth Science, 2021, 46(7):2449-2465.
[38] BUGGISCH W, JOACHIMSKI M M, LEHNERT O, et al. Did intense volcanism trigger the first Late Ordovician icehouse?[J]. Geology, 2010, 38(4):327-330.
[39] WANG Yong, TAN Jingqiang, WANG Wenhui, et al. The influence of Late Ordovician volcanism on the marine environment based on high-resolution mercury data from South China[J]. GSA Bulletin, 2022, 135(3/4):787-798.
[40] 牟传龙, 葛祥英, 余谦, 等. 川西南地区五峰-龙马溪组黑色页岩古气候及物源特征:来自新地2井地球化学记录[J]. 古地理学报, 2019, 21(5):835-854. MOU Chuanlong, GE Xiangying, YU Qian, et al. Palaeoclimatology and provenance of black shales fromWufeng-Longmaxi Formations in southwestern Sichuan Province:From geochemical records of well Xindi-2[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(5):835-854.
[41] 龚方怡. 华南扬子台地中、晚奥陶世牙形类与高精度综合地层学研究[D]. 合肥:中国科学技术大学, 2021. GONG Fangyi. Middle and Late Ordovician conodonts and highresolution integrated stratigraphy in Yangtze region, South China[D]. Hefei:University of Science and Technology of China, 2021.
[42] ZOU Caineng, QIU Zhen, POULTON S W, et al. Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6):535-538.
[43] LIU Mu, CHEN Daizhao, JIANG Lei, et al. Oceanic anoxia and extinction in the latest Ordovician[J]. Earth and Planetary Science Letters, 2022, 588:117553.
[44] YAN Detian, CHEN Daizhao, WANG Qingchen, et al. Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology, 2012, 291:69-78.
[1] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[2] 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132.
[3] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[4] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[5] 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34.
[6] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[7] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[8] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[9] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[10] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[11] 岑永静, 梁锋, 王立恩, 刘倩虞, 张鑫哲, 丁熊. 四川盆地蓬莱—中江地区震旦系灯影组二段成藏特征[J]. 岩性油气藏, 2024, 36(2): 89-98.
[12] 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146.
[13] 李毕松, 苏建龙, 蒲勇, 缪志伟, 张文军, 肖伟, 张雷, 江馀. 四川盆地元坝地区二叠系茅口组相控岩溶刻画及预测[J]. 岩性油气藏, 2024, 36(1): 69-77.
[14] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[15] 张坦, 贾梦瑶, 孙雅雄, 丁文龙, 石司宇, 范昕禹, 姚威. 四川盆地南部中二叠统茅口组岩溶古地貌恢复及特征[J]. 岩性油气藏, 2024, 36(1): 111-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .