岩性油气藏 ›› 2024, Vol. 36 ›› Issue (4): 178–188.doi: 10.12108/yxyqc.20240416

• 石油工程与油气田开发 • 上一篇    

边水气藏水侵动态分析方法及水侵主控因素

秦正山1, 何勇明1, 丁洋洋1, 李柏宏2, 孙双双1   

  1. 1. 成都理工大学 能源学院, 成都 610000;
    2. 中国石油长庆油田公司 第六采油厂, 西安 710000
  • 收稿日期:2022-11-26 修回日期:2023-01-11 出版日期:2024-07-01 发布日期:2024-07-04
  • 第一作者:秦正山(1994—),男,成都理工大学在读博士研究生,研究方向为油气藏工程、油气渗流理论。地址:(610000)四川省成都市成华区成都理工大学能源学院。Email:reservoirsresearch@163.com。
  • 基金资助:
    成都理工大学研究生拔尖创新人才培育项目“含水层储气库注采过程地层干化盐析损伤机理及数学模型研究”(编号:CDUT2022BJCX005)资助。

Water invasion performance and main controlling factors for edge-water gas reservoirs

QIN Zhengshan1, HE Yongming1, DING Yangyang1, LI Baihong2, SUN Shuangshuang1   

  1. 1. School of Energy, Chengdu University of Technology, Chengdu 610000, China;
    2. No. 6 Oil Production Plant, PetroChina Changqing Oilfield Company, Xi'an 710000, China
  • Received:2022-11-26 Revised:2023-01-11 Online:2024-07-01 Published:2024-07-04

摘要: 基于经典分流理论与气水渗流规律,推导了考虑气体高速非达西渗流的边水气藏分流方程,并根据四川盆地某边水气藏多口产水气井的基础资料,分析了水侵动态特征参数的变化规律及主控因素,探讨了延缓气藏水侵的技术思路与对策。研究结果表明:①新的改进分流方程能够确定不同开发时刻气藏(或气井)边水的整体推进情况及见边水时间,相较于传统的基于达西定律的分流方程,该计算结果更加可靠。②边水气藏水侵动态受制于多种因素的综合影响,其中储层渗透率对其影响最为显著,其次为非达西流系数、相对渗透率及孔隙度,而有效厚度、供气边界及水侵流量的影响程度较小。③充分发掘物性较均一的低渗致密段储层的开发潜力是提升边水气藏开发效果的关键,制定合理的气藏采气强度是主动控水、稳水的重要手段。

关键词: 分流理论, 水侵动态, 非达西流, 熵权法, 物性, 有效厚度, 供气边界, 水侵流量, 低渗致密储层, 采气强度, 边水气藏

Abstract: Based on classical fractional flow theory and gas-water percolation law,the fractional flow equation for edge-water gas reservoirs considering high-speed non-Darcy flow of gas phase was derived. The characteristic parameters and controlling factors of water invasion performance were analyzed based on the data of multiple water-producing gas wells in an edge-water gas reservoir in Sichuan Basin,and the technical approaches and strategies for delaying water invasion in gas reservoirs were discussed. The results show that:(1)The derived fractional flow equation can determine the overall advancement and breakthrough time of edge water in the reservoir(or gas well)at different development times,and the calculation results are more reliable than that by the traditional Darcy flow model.(2)The water invasion performance of the edge-water gas reservoirs is affected by a combination of multiple factors,the reservoir permeability has the most significant influence,followed by non-Darcy flow coefficient,relative permeability and porosity,while effective thickness,gas supply boundary and water invasion flow rate are less influential.(3)Fully exploiting the development potential of low-permeability and tight reservoirs with relatively uniform physical properties is the key to enhancing the development effectiveness of edge-water gas reservoirs,and formulating a reasonable gas recovery intensity is an important means to actively control and stabilize water.

Key words: fractional flow theory, water invasion performance, non-Darcy flow, entropy method, physical properties, effective thickness, gas supply boundary, water invasion flow rate, low-permeability and tight reservoir, gas recovery intensity, edge-water gas reservoir

中图分类号: 

  • TE312
[1] LEE J,WATTENBARGAR R A. Gas Reservoir Engineering[M]. Houston:Society of Petroleum Engineers,1996.
[2] 邓成刚,李江涛,柴小颖,等.涩北气田弱水驱气藏水侵早期识别方法[J].岩性油气藏,2020,32(1):128-134. DENG Chenggang,LI Jiangtao,CHAI Xiaoying,et al. Early identification methods of water invasion in weak water drive gas reservoirs in Sebei gas field,Qaidam Basin[J]. Lithologic Reservoirs,2020,32(1):128-134.
[3] 杨宇,孙晗森,彭小东,等.气藏动态储量计算原理[M].北京:科学出版社,2016. YANG Yu,SUN Hansen,PENG Xiaodong,et al. Principles of gas reservoirs dynamic reserve calculation[M]. Beijing:Science Press,2016.
[4] 廖恒杰,杨志兴,李元生,等.西湖凹陷气藏出水规律及控制因素[J].岩性油气藏,2017,29(6):135-141. LIAO Hengjie,YANG Zhixing,LI Yuansheng,et al. Water production laws and controlling factors of gas reservoir in Xihu Sag[J]. Lithologic Reservoirs,2017,29(6):135-141.
[5] 苟燕,刘华勋,高树生,等.水驱气藏的水驱特征曲线与应用效果分析[J].石油钻采工艺,2013,35(3):63-65. GOU Yan,LIU Huaxun,GAO Shusheng,et al. Research and application effect analysis on water-drive characteristic curve for water-drive gas reservoir[J]. Oil Drilling&Production Technology,2013,35(3):63-65.
[6] 胡俊坤,李晓平,宋代诗雨.水驱气藏动态储量计算新方法[J].天然气地球科学,2013,24(3):628-632. HU Junkun,LI Xiaoping,SONG Daishiyu. A new method for dynamic reserves evaluation of water-drive gas reservoir[J]. Natural Gas Geoscience,2013,24(3):628-632.
[7] 陈恒,杜建芬,郭平,等.裂缝型凝析气藏的动态储量和水侵量计算研究[J].岩性油气藏,2012,24(1):117-120. CHEN Heng,DU Jianfen,GUO Ping,et al. Study on calculation of dynamic reserves and water influx in fractured condensate gas reservoir[J]. Lithologic Reservoirs,2012,24(1):117-120.
[8] 谭先红,梁斌,王帅,等.一种低渗储层凝析气藏气井产能评价方法研究[J].油气藏评价与开发,2021,11(5):724-729. TAN Xianhong,LIANG Bin,WANG Shuai,et al. A productivity evaluation method of gas wells in condensate gas reservoirs with low permeability[J]. Reservoir Evaluation and Development,2021,11(5):724-729.
[9] ZHANG Jiqun,DENG Baorong,HU Changjun,et al. Computation method for water influx in different layers of natural edge water[J]. Petroleum Exploration and Development,2016,43(5):825-831.
[10] 邓成刚,孙勇,曹继华,等.柴达木盆地涩北气田地质储量和水侵量计算[J].岩性油气藏,2012,24(2):98-101. DENG Chenggang,SUN Yong,CAO Jihua,et al. Calculation of original gas in place and water influx in the Sebei gas field, Qaidam Basin[J]. Lithologic Reservoirs,2012,24(2):98-101.
[11] 蒋琪,王中元,宫宇宁,等.顶水水侵对SAGD开采效率的影响及顶水下窜速率预测[J].特种油气藏,2022,29(2):72-76. JIANG Qi,WANG Zhongyuan,GONG Yuning,et al.Influence of top water intrusion on SAGD production efficiency and prediction of downward channeling rate of top water[J]. Special Oil&Gas Reservoirs,2022,29(2):72-76.
[12] 何云峰,杨小腾.活跃边水气藏水侵系数与稳产期关系研究[J].油气藏评价与开发,2021,11(1):124-128. HE Yunfeng,YANG Xiaoteng. Relation between water invasion coefficient and stable production period in gas reservoirs with active edge water[J]. Reservoir Evaluation and Development,2021,11(1):124-128.
[13] 张冰岩,陈小凡,乐平.水侵缝洞型碳酸盐岩底水油藏弹性驱动单元开采研究[J].油气藏评价与开发,2020,10(2):71-75. ZHANG Bingyan,CHEN Xiaofan,YUE Ping. Research on unit mining by elastic drive of fractured-vuggy carbonate reservoir with bottom water by water intrusion[J]. Reservoir Evaluation and Development,2020,10(2):71-75.
[14] AMIRSARDARI M,ALALI N,AFSARI K. Modeling aquifer flow behavior in low-dip edge-water drive gas reservoirs[J]. Natural Resources Research,2021,30(1):479-493.
[15] 李传亮.油藏工程原理[M].北京:石油工业出版社,2017. LI Chuanliang. Principles of oil reservoir engineering[M]. Beijing:Petroleum Industry Press,2017.
[16] BUCKLEY S E,LEVERETT M C. Mechanism of fluid displacement in sands[J]. Transactions of the AIME,1942,146(1):107-116.
[17] DAKE L P. Fundamentals of reservoir engineering[M]. Amsterdam:Elsevier BV,1983.
[18] FORCHHEIMER P H. Wasserbewegung durch boden[J]. Zeitschrift des Vereines Deutscher Ingenieure,1901,45(50):1782-1788.
[19] EVANS E V,EVANS R D. The influence of an immobile or mobile saturation upon Non-Darcy compressible flow of real gases in propped fractures[J]. Journal of Petroleum Technology,1988,40(10):1343-1351.
[20] LIU X,CIVAN F,EVANS R D. Correlation of the non-Darcy flow coefficient[J]. Journal of Canadian Petroleum Technology,1995,34(10):50-64.
[21] HOCKING R R. Methods and applications of linear models:Regression and the analysis of variance[M]. Ishpeming:John Wiley&Sons,2013.
[22] GAO Chenglu,LI Shucai,WANG Jing,et al. The risk assessment of tunnels based on grey correlation and entropy weight method[J]. Geotechnical and Geological Engineering,2018,36(3):1621-1631.
[23] GHANBARNEZHAD-MOGHANLOO R,LAKE L W. Applying fractional-flow theory under the loss of miscibility[J]. SPE Journal,2012,17(3):661-670.
[24] BROOKS R H. Hydraulic properties of porous media[M]. Fort Collins:Colorado State University,1964.
[25] 陈军,秦柯,任洪伟,等.利用气藏生产指示曲线计算凝析气藏水侵量[J].岩性油气藏,2015,27(2):103-108. CHEN Jun,QIN Ke,REN Hongwei,et al. Estimation of water influx in condensate gas pool by means of productivity index curve[J]. Lithologic Reservoirs,2015,27(2):103-108.
[1] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[2] 夏明军, 邵新军, 杨桦, 王忠生, 李之宇, 张超前, 原瑞娥, 法贵方. 海外岩性油气藏储量分类分级方法[J]. 岩性油气藏, 2023, 35(6): 37-44.
[3] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[4] 许璟, 贺永红, 马芳侠, 杜彦军, 马浪, 葛云锦, 王瑞生, 郭睿, 段亮. 鄂尔多斯盆地定边油田主力油层有效储层厚度[J]. 岩性油气藏, 2021, 33(5): 107-119.
[5] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[6] 卿繁, 闫建平, 王军, 耿斌, 王敏, 赵振宇, 晁静. 砂砾岩体沉积期次划分及其与物性的关系——以东营凹陷北部陡坡带Y920区块沙四上亚段为例[J]. 岩性油气藏, 2020, 32(6): 50-61.
[7] 陈怡婷, 刘洛夫, 王梦尧, 窦文超, 徐正建. 鄂尔多斯盆地西南部长6、长7储集层特征及控制因素[J]. 岩性油气藏, 2020, 32(1): 51-65.
[8] 吴家洋, 吕正祥, 卿元华, 杨家静, 金涛. 致密油储层中自生绿泥石成因及其对物性的影响——以川中东北部沙溪庙组为例[J]. 岩性油气藏, 2020, 32(1): 76-85.
[9] 柳娜, 周兆华, 任大忠, 南珺祥, 刘登科, 杜堃. 致密砂岩气藏可动流体分布特征及其控制因素——以苏里格气田西区盒8段与山1段为例[J]. 岩性油气藏, 2019, 31(6): 14-25.
[10] 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164.
[11] 杜贵超, 苏龙, 陈国俊, 张功成, 丁超, 曹青, 鲁岳鑫. 番禺低隆起珠海组砂岩碳酸盐胶结特征及其对储层物性的影响[J]. 岩性油气藏, 2019, 31(3): 10-19.
[12] 黄全华, 林星宇, 童凯, 陆云, 付云辉. 非达西渗流边水气藏水平井见水时间预测[J]. 岩性油气藏, 2019, 31(1): 147-152.
[13] 黄斌, 许瑞, 傅程, 张威, 史振中. 注采井间优势通道的多层次模糊识别方法[J]. 岩性油气藏, 2018, 30(4): 105-112.
[14] 曹涛涛, 邓模, 刘虎, 宋之光, 曹清古, 黄俨然. 可溶有机质对泥页岩储集物性的影响[J]. 岩性油气藏, 2018, 30(3): 43-51.
[15] 庞小军, 代黎明, 王清斌, 刘士磊, 冯冲. 渤中凹陷西北缘东三段低渗透储层特征及控制因素[J]. 岩性油气藏, 2017, 29(5): 76-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .