致密砂岩储层,沉积环境,成岩作用,储层评价,勘探选区," /> 致密砂岩储层,沉积环境,成岩作用,储层评价,勘探选区,"/> tight sandstone reservoir , sedimentary environments, diagenesis, reservoire valuation, prospecting area,"/> 二连盆地赛汉塔拉凹陷烃源岩有机相与烃源灶

岩性油气藏 ›› 2017, Vol. 29 ›› Issue (2): 28–35.doi: 10.3969/j.issn.1673-8926.2017.02.004

• 油气地质 • 上一篇    下一篇

二连盆地赛汉塔拉凹陷烃源岩有机相与烃源灶

赵志刚1, 王飞宇2, 王洪波1, 王名巍1, 王浩3, 蓝宝峰1   

  1. 1. 中国石油华北油田分公司 勘探开发研究院, 河北 任丘 062552;
    2. 中国石油大学(北京)地球科学学院, 北京 102249;
    3. 西北大学 研究生院, 西安 710069
  • 收稿日期:2017-01-09 修回日期:2017-02-15 出版日期:2017-03-21 发布日期:2017-03-21
  • 通讯作者: 王飞宇(1963-),男,博士,教授,主要从事石油地质方面的研究工作。Email:fywang@cup.edu.cn。
  • 作者简介:赵志刚(1967-),男,硕士,高级工程师,主要从事油气勘探与油藏评价方面的地质综合研究工作。地址:(062552)河北省任丘市建设中路中国石油华北油田分公司勘探开发研究院。Email:631223473@qq.com
  • 基金资助:
    中国石油天然气股份有限公司重大科技专项“华北油田上产稳产800 万吨关键技术研究与应用”(编号:2014E-35)资助

Source kitchen and organic facies of source rocks in Sahantala Sag, Erlian Basin

ZHAO Zhigang1, WANG Feiyu2, WANG Hongbo1, WANG Mingwei1, WANG Hao3, LAN Baofeng1   

  1. 1. Research Institute of Exploration and Development, PetroChina Huabei Oilfield Company, Renqiu 062552, Hebei, China;
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Graduate School of Northwest University, Xi'an 710069, China
  • Received:2017-01-09 Revised:2017-02-15 Online:2017-03-21 Published:2017-03-21

摘要: 在油气勘探过程中,有机相的研究有助于定量表征烃源灶。为了更好地分析二连盆地赛汉塔拉凹陷的勘探前景,应用大量岩石热解数据对烃源岩有机相进行划分,实现了对烃源岩的分类评价,同时结合烷烃参数、生物标志物参数和镜质体反射率标定烃源岩有机质成熟度,进而实现了对烃源灶的定量表征。研究表明:赛汉塔拉凹陷自下而上发育阿尔善组、腾一段和腾二段3 套烃源岩,其中阿尔善组主要发育F 相烃源岩,腾一段和腾二段主要发育D/E 相烃源岩,兼有少量C 相烃源岩,垂向上从阿尔善组到腾一段和腾二段下部再到腾二段上部,显示出F 相—D/E 相— F 相的烃源岩分布特征;腾一段烃源灶为主力烃源灶,排烃强度为(500~3 500)万t/km2,阿尔善组烃源灶为次要烃源灶,排烃强度为(200~800)万t/km2。研究结果为二连盆地赛汉塔拉凹陷资源潜力分析提供了依据。

关键词:

Abstract: The study of organic facies of source rocks can contribute to characterize the source kitchen in the hydrocarbon exploration and development. In order to assess the prospects of Saihantala Sag,Erlian Basin,the Rock-Eval data were used to classify the organic facies of source rocks and realize the evaluation of source rocks. The parameters of alkanes,biomarker and vitrinite reflectance were used to determine the organic matter maturity of hydrocarbon source rocks,and the quantitative characterization of source kitchen was realized. The results show that the Lower Cretaceous source rocks mainly developed in the A'ershan Formation(K1ba),the first member(K1 bt1)and second member(K1 bt2)of Tenggeer Formation in Saihantala Sag. The source rocks in the K1 ba are mainly organic facies F,and the source rocks in K1 bt1 and K1 bt2 are mainly organic facies D/E,with a little organic facies C. The vertical distribution of source rocks shows the characteristics of organic facies F,D/E and F from bottom to top. The source rocks in the K1 bt1 is the main source rocks,and the hydrocarbon expulsion intensity ranges from 5×106 t/km2 to 35×106 t/km2,followed by K1ba source rocks,and the hydrocarbon expulsion intensity is(2-8)×106 t/km2.

Key words: tight sandstone reservoir ')">

中图分类号: 

  • TE122.1
[1] ROGERS M A. Application of organic facies concept to hydrocarbon source evaluation. 10 th World Petroleum Congress,Bucharest, Romania,1980:23-30.
[2] JONES R W. Organic facies//WELT E D. Advance in petroleum geochemistryⅡ. London:Academic Press,1987:1-89.
[3] HUC A Y. Deposition of organic facies. AAPG Studies in Geology 30,1990:1-12.
[4] THOMPSON S,MORLEY R J. Facies recognition of some Tertiary coals applied to prediction of oil source rock occurrence. Marine and Petroleum Geology,1985,4(2):288-297.
[5] PEPPER A S,CORVI P J. Simple kinetic models of petroleum formation. Part I:oil and gas generation from kerogen. Marine and Petroleum Geology,1995,12(3):291-319.
[6] FILHO J G M,CHAGAS R B A,MENEZES T R,et al. Organic facies of the Oligocene lacustrine system in the Cenozoic Taubaté Basin,Southern Brazi. International Journal of Coal Geology, 2010,84(3/4):166-178.
[7] MANN U,STEIN R. Organic facies variations,source rock potential, and sea level changes in Cretaceous black shales of the Quebrada Ocal,Upper Magdalena Valley,Colombia. AAPG Bulletin,1997,81(4):556-576.
[8] SONG J,LITTKE R,MAQUIL R,et al. Organic facies variability in the Posidonia Black Shale from Luxembourg:implications for thermal maturation and depositional environment. Palaeogeography,Palaeoclimatology,Palaeoecology,2014,410: 316-336.
[9] TRIBOVILLARD N,BIALKOWSKI A,TYSON R V,et al. Organic facies variation in the late Kimmeridgian of the Boulonnais area(northernmost France). Marine and Petroleum Geology, 2001,18(3):371-389.
[10] TUWENI A O,TYSON R V. Organic facies variations in the Westbury Formation(Rhaetic,Bristol channel,SW England). Organic Geochemistry,1994,21(10/11):1001-1014.
[11] 郝芳,陈建渝,孙永传,等. 有机相研究及其在盆地分析中的 应用. 沉积学报,1994,12(4):77-86. HAO F,CHEN J Y,SUN Y C,et al. Organic facies studies and their use in sedimentary basin analysis. Acta Sedimentologica Sinica,1994,12(4):77-86.
[12] 彭立才,杨慧珠,刘兰桂,等. 柴达木盆地北缘侏罗系烃源岩 沉积有机相划分及评价. 石油与天然气地质,2001,22(2): 178-181. PENG L C,YANG H Z,LIU L G,et al. Classification and estimation of organic facies in Jurassic source rocks from north margin,Chaidamu Basin. Oil & Gas Geology,2001,22(2):178-181.
[13] 姚素平,张科,胡文瑄,等. 鄂尔多斯盆地三叠系延长组沉积 有机相. 石油与天然气地质,2009,30(1):74-84. YAO S P,ZHANG K,HU W X,et al. Sedimentary organic facies of the Triassic Yanchang Formation in the Ordos Basin. Oil & Gas Geology,2009,30(1):74-84.
[14] 闫文华,张万福,张立新,等. 二连盆地赛汉塔拉凹陷地质综 合评价及目标优选. 石油地球物理勘探,2008,43(增刊1): 139-145. YAN W H,ZHANG W F,ZHANG L X,et al. Integrative geologic evaluation and objective optimization of Saihantala Sag, Erlian Basin. Oil Geophysical Prospecting,2008,43(Suppl 1): 139-145.
[15] EVENICK J C,MCCLAIN T. Method for characterizing source rock organofacies using bulk rock composition. AAPG Memoir 103,2013:71-80.
[16] 王飞宇,王波,金涛,等. 富油气凹陷烃源灶定量表征的理论 和关键技术. 北京:第三届中国石油地质年会论文集,2009. WANG F Y,WANG B,JIN T,et al. The theory and key technology of refined characteriza-tion of source kitchen in prolific sag. Beijing:The Third Annual Petroleum Geology Conference of China,2009.
[17] 程三友,刘少峰,苏三,等. 二连盆地赛汉塔拉凹陷构造特征 分析. 石油地球物理勘探,2011,46(6):961-969. CHENG S Y,LIU S S,SU S,et al. Structural characteristics analysis of Saihantala Sag in Erlian Basin. Oil Geophysical Prospecting,2011,46(6):961-969.
[18] 赵志刚. 二连盆地赛汉塔拉凹陷石油地质综合研究及目标优 选评价. 荆州:长江大学,2013. ZHAO Z G. The Comprehensive resech in petroleum geology and objective optimization of Saihantala Sag of Erlian Basin. Jingzhou:Yangtze University,2013.
[19] 丁修建,柳广弟,黄志龙,等. 二连盆地赛汉塔拉凹陷烃源岩 的分布及形成. 中南大学学报(自然科学版),2015,46(5): 1739-1746. DING X J,LIU G D,HUANG Z L,et al. Source rock distribution and formation in Saihantala Depression,Erlian Basin. Journal of Central South University(Science and Technology), 2015,46(5):1739-1746.
[20] 赵贤正,柳广弟,金凤鸣,等. 小型断陷湖盆有效烃源岩分布 特征与分布模式——以二连盆地下白垩统为例. 石油学报, 2015,36(6):641-652. ZHAO X Z,LIU G D,JIN F M,et al. Distribution features and pattern of effective source rock in small faulted lacustrine basin: a case study of the Lower Cretaceous in Erlian Basin. Acta Petrolei Sinica,2015,36(6):641-652.
[21] 杜维良,李先平,肖阳,等. 二连盆地反转构造及其与油气的 关系. 科技导报,2007,25(11):45-47. DU W L,LI X P,XIAO Y,et al. Reverse structures in Erlian Basin and their relations with hydrocarbon. Science & Technology Review,2007,25(11):45-47.
[22] 程艳清. 二连盆地赛汉塔拉凹陷下白垩统沉积特征研究. 北 京:中国地质大学,2010. CHENG Y Q. Sedimentary characteristics study on Lower Cretaceous of Saihantala Sag,Erlian Basin. Beijing:China University of Geoseience,2010.
[23] 屈晓艳,杨明慧,罗晓华,等. 二连盆地赛汉塔拉凹陷伸展构 造特征及其控藏作用. 现代地质,2013,27(5):1023-1032. QU X Y,YANG M H,LUO X H,et al. Extensional tectonic feature and its control on hydrocarbon accumulation of Saihantala Sag in Erlian Basin. Geoscience,2013,27(5):1023-1032.
[24] 曹强,叶加仁,王巍. 沉积盆地地层剥蚀厚度恢复方法及进 展.中国石油勘探,2007,12(6):41-46. CAO Q,YE J R,WANG W. Methods of eroded strata thickness restoration in sedimentary basins and its advancement. China Petroleum Exploration,2007,12(6):41-46.
[25] 佟彦明,宋立军,曾少军,等. 利用镜质体反射率恢复地层剥 蚀厚度的新方法. 古地理学报,2005,7(3):417-424. TONG Y M,SONG L J,ZENG S J,et al. A new method by vitrinite reflectance to estimate thickness of eroded strata. Journal of Paleogeography,2005,7(3):417-424.
[26] 王绪龙. 镜质体反射率和甾烷与霍烷异构化程度在恢复盆地 热史中的应用. 新疆石油地质,1991,12(3):198-205. WANG X L. Application of vitrinite reflectance,sterane and hopane isomer data to thermal history reconstruction of basin. Xinjiang Petroleum Geology,1991,12(3):198-205.
[27] 李超,张立强,张立宽,等. 鄂尔多斯盆地镇泾地区中生代地 层剥蚀厚度估算及古构造恢复. 岩性油气藏,2016,28(2): 72-79. LI C,ZHANG L Q,ZHANG L K,et al. Estimation of denudation thickness of Mesozoic strata and paleostructure restoration in Zhenjing area,Ordos Basin. Lithologic Reserviors,2016,28 (2):72-79.
[1] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[2] 陈亚军, 荆文波, 宋小勇, 何伯斌, 伍宏美, 王睿, 解士建, 宋凯辉, 马强. 三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J]. 岩性油气藏, 2021, 33(4): 63-75.
[3] 郑荣臣, 李宏涛, 史云清, 肖开华. 川东北元坝地区三叠系须三段沉积特征及成岩作用[J]. 岩性油气藏, 2021, 33(3): 13-26.
[4] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
[5] 彭军, 许天宇, 于乐丹. 东营凹陷沙河街组四段湖相细粒沉积特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 1-12.
[6] 张满郎, 孔凡志, 谷江锐, 郭振华, 付晶, 郑国强, 钱品淑. 九龙山气田珍珠冲组砂砾岩储层评价及有利区优选[J]. 岩性油气藏, 2020, 32(3): 1-13.
[7] 王继伟, 朱玉双, 饶欣久, 周树勋, 吴英强, 杨红梅. 鄂尔多斯盆地胡尖山地区长61致密砂岩储层成岩特征与孔隙度定量恢复[J]. 岩性油气藏, 2020, 32(3): 34-43.
[8] 庞小军, 王清斌, 解婷, 赵梦, 冯冲. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏, 2020, 32(2): 1-13.
[9] 陈怡婷, 刘洛夫, 王梦尧, 窦文超, 徐正建. 鄂尔多斯盆地西南部长6、长7储集层特征及控制因素[J]. 岩性油气藏, 2020, 32(1): 51-65.
[10] 李佳思, 付磊, 张金龙, 陈静, 牛斌, 张顺存. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(6): 54-66.
[11] 郭艳琴, 何子琼, 郭彬程, 惠磊, 蔡志成, 王美霞, 李文厚, 李百强. 苏里格气田东南部盒8段致密砂岩储层特征及评价[J]. 岩性油气藏, 2019, 31(5): 1-11.
[12] 叶亚培, 唐书恒, 郗兆栋, 张耀选. 黔北地区牛蹄塘组页岩矿物组成特征与脆性评价[J]. 岩性油气藏, 2019, 31(4): 62-71.
[13] 高乔, 王兴志, 朱逸青, 赵圣贤, 张芮, 肖哲宇. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J]. 岩性油气藏, 2019, 31(4): 72-84.
[14] 杜贵超, 苏龙, 陈国俊, 张功成, 丁超, 曹青, 鲁岳鑫. 番禺低隆起珠海组砂岩碳酸盐胶结特征及其对储层物性的影响[J]. 岩性油气藏, 2019, 31(3): 10-19.
[15] 易定红, 王建功, 石兰亭, 王鹏, 陈娟, 孙松领, 石亚军, 司丹. 柴达木盆地英西地区E32碳酸盐岩沉积演化特征[J]. 岩性油气藏, 2019, 31(2): 46-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .