岩性油气藏 ›› 2017, Vol. 29 ›› Issue (2): 145–149.doi: 10.3969/j.issn.1673-8926.2017.02.018

• 油气田开发 • 上一篇    下一篇

煤层气井突然产气机理分析

李传亮1, 朱苏阳1, 彭朝阳2, 王凤兰3, 杜庆龙4, 由春梅4   

  1. 1. 西南石油大学 石油与天然气工程学院, 成都 610599;
    2. 泛亚大陆能源技术有限公司, 北京 100026;
    3. 中国石油大庆油田有限责任公司 开发部, 黑龙江 大庆 163712;
    4. 中国石油大庆油田有限责任公司 勘探开发研究院, 黑龙江 大庆 163712
  • 收稿日期:2016-08-29 修回日期:2016-10-24 出版日期:2017-03-21 发布日期:2017-03-21
  • 第一作者:李传亮(1962-),男,博士,教授,主要从事油气藏工程方面的教学与科研工作。地址:(610599)四川省成都市新都区西南石油大学石油与天然气工程学院。Email:cllipe@qq.com。
  • 基金资助:
    国家重大科技专项“特高含水期多层非均质油藏渗流机理及水驱规律研究”(编号:2016ZX05054010)资助

Mechanism of gas production rate outburst in coalbed methane wells

LI Chuanliang1, ZHU Suyang1, PENG Chaoyang2, WANG Fenglan3, DU Qinglong4, YOU Chunmei4   

  1. 1. College of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610599, China;
    2. Pan Asia Energy Technology Co., Ltd., Beijing 100026, China;
    3. Department of Development, PetroChina Daqing Oilfield Co. Ltd., Daqing 163712, Heilongjiang, China;
    4. Research Institute of Exploration and Development, PetroChina Daqing Oilfield Co. Ltd., Daqing 163712, Heilongjiang, China
  • Received:2016-08-29 Revised:2016-10-24 Online:2017-03-21 Published:2017-03-21

摘要: 煤层气井开采时一般先排水后采气,且见气时的产量不是缓慢而是突然升高。为了弄清煤层气井突然产气的机理,从煤储层的结构、产气过程等方面进行了深入分析和研究。结果表明:煤岩储层微观上为双重介质,由割理(裂缝)和基质岩块2 个系统组成;割理和基质孔隙中均充满了地层水,煤层气为赋存在基质中的吸附气,需排水降压解吸后才能被采出;刚解吸出的少量气体饱和程度较小,多以气泡的形式分散在基质孔隙水中,由于受到基质毛管压力的限制,这些气体无法流动;随着解吸气量增多,气泡逐渐变成连续相,气体的饱和程度增加,压力升高,流动性也有所增强,但是煤岩基质孔隙一般较小,毛管压力较高,很多气体仍被限制在基质孔隙中,只有当气体压力升高到突破毛管压力之后,大量的解吸气才会倾泻到割理中,致使煤层气井产气量突然升高。煤层气井的产气压力低于解吸压力,而煤层气的解吸压力其实就是地层水的饱和压力或泡点压力。在煤层气开采过程中,可以采取相应节流措施来控制煤层气井的产量变化,以达到稳产及保护煤层和生产管柱的效果。

Abstract: Coalbed methane(CBM)wells must drain water from coalbeds before producing gas. The gas production rate increases suddenly rather than slowly at breakthrough of gas at wells,which is a strange phenomenon so far people do not know its mechanism. In order to understand production characteristics of CBM,the mechanism of production rate outburst of CBM wells was analyzed. It is recognized that coal rocks are dual porosity media in microscope,consisting of cleats(fractures)and matrix blocks. Cleats and matrix pores of coals are saturated with formation water. CBM exists in the matrix with the form of adsorption,which can be exploited only after desorption from matrix under pressure drawdown through draining formation water. A little of desorbed gas cannot flow due to obstacle of capillary pressure,which are dispersed in water with a small saturation. As desorbed gas is increased and accumulated into continuous phase with a high saturation,the gas pressure and the flowing ability are also increased simultaneously. Coal matrix pores are quite small with high capillary pressure,which can trap massive desorbed gas in coal matrix. When increasing gas pressure breaks the capillary pressure,the massive desorbed gas flows suddenly into cleats of coal rocks,which results in the outburst of gas production rate in CBM wells. The production pressure of CBM is lower than its desorption pressure. The desorption pressure of CBM is actually the saturation or bubble pressure of formation water. Abrupt increase of production rate may damage coalbed or production tubes,so it is necessary to take a possible control of production rate in practice.

中图分类号: 

  • P618.13
[1] 邹才能.非常规油气地质.北京:地质出版社,2011:94-125. ZOU C N. Unconventional petroleum geology. Beijing:Geology Press,2011:94-125.
[2] 李相方,蒲云超,孙长宇,等. 煤层气与页岩气吸附/解吸的理 论再认识.石油学报,2014,35(6):1113-1129. LI X F,PU Y C,SUN C Y,et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir. Acta Petrolei Sinica,2014,35(6):1113-1129.
[3] KROOSS B M,VAN BERGEN F,GENSTERBLUM Y,et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. International Journal of Coal Geology,2002,51(2):69-92.
[4] 李传亮,彭朝阳,朱苏阳.煤层气其实是吸附气.岩性油气藏, 2013,25(2):112-115. LI C L,PENG C Y,ZHU S Y. Coalbed methane is adsorption gas underground. Lithologic Reservoirs,2013,25(2):112-115.
[5] 朱苏阳,李传亮,杜志敏,等. 也谈煤层气的液相吸附. 新疆石 油地质,2015,36(5):620-623. ZHU S Y,LI C L,DU Z M,et al. Discussion on liquid phase adsorption of coalbed methane. Xinjiang Petroleum Geology, 2015,36(5):620-623.
[6] 李传亮,彭朝阳. 煤层气的开采机理研究. 岩性油气藏,2011, 23(4):9-11. LI C L,PENG C Y. Research on the flow mechanism of coalbed methane. Lithologic Reservoirs,2011,23(4):9-11.
[7] 闫霞,李小军,赵辉,等. 煤层气井井间干扰研究及应用. 岩性 油气藏,2015,27(2):126-132. YAN X,LI X J,ZHAO H,et al. Research on well interference of coalbed methane wells and its application. Lithologic Reservoirs, 2015,27(2):126-132.
[8] 李金海,苏现波,林晓英,等. 煤层气井排采速率与产能的关 系.煤炭学报,2009,34(3):376-380. LI J H,SU X B,LIN X Y,et al. Relationship between discharge rate and productivity of coalbed methane wells. Journal of China Coal Society,2009,34(3):376-380.
[9] 秦勇,袁亮,胡千庭,等. 我国煤层气勘探与开发技术现状及 发展方向.煤炭科学技术,2012,40(10):1-6. QIN Y,YUAN L,HU Q T,et al. Status and development orientation of coal bed methane exploration and and development technology in China. Coal Science and Techonlogy,2012,40 (10):1-6.
[10] 庄惠农,韩永新. 煤层气层渗流与煤层气试井. 重庆大学学报 (自然科学版),2000,23(增刊1):18-21. ZHUANG H N,HAN Y X. Porous flow and well test in coalbed methane formation. Journal of Chongqing University(Natural Science Edition),2000,23(Suppl 1):18-21.
[11] 李传亮. 油气藏工程原理.2 版. 北京:石油工业出版社,2011: 60-68. LI C L. Fundamentals of reservoir engineering. 2nd ed. Beijing: Petroleum Industry Press,2011:60-68.
[12] 秦文贵,张延松. 煤孔隙分布与煤层注水增量的关系. 煤炭学 报,2000,25(5):514-517. QIN W G,ZHANG Y S. Relation of pore distribution of coal with water infusion increment in seams. Journal of China Coal Society,2000,25(5):514-517.
[1] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[2] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[3] 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[4] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[5] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[6] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[7] 尹路, 李博, 齐雯, 孙东, 乐幸福, 马慧. 天然氢气规模生成的成因类型与成藏特点[J]. 岩性油气藏, 2024, 36(6): 1-11.
[8] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[9] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[10] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[11] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[12] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[13] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[14] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[15] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .