岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 34–44.doi: 10.12108/yxyqc.20210504

• 油气地质 • 上一篇    下一篇

准噶尔盆地玛南地区乌尔禾组砂砾岩优质储层特征

王剑1,2,3, 周路1, 靳军2,3, 向宝力2,3, 胡文瑄4, 杨洋2,3, 康逊4   

  1. 1. 西南石油大学 油气藏地质及开发工程国家重点实验室, 成都 610500;
    2. 中国石油新疆油田分公司实验检测研究院, 新疆 克拉玛依 834000;
    3. 新疆砾岩油藏实验室, 新疆 克拉玛依 834000;
    4. 南京大学 地球科学与工程学院, 南京 210023
  • 收稿日期:2021-03-08 修回日期:2021-06-08 出版日期:2021-10-01 发布日期:2021-09-30
  • 作者简介:王剑(1984-),男,硕士,高级工程师,主要从事油气地质、沉积储层方面的研究工作。地址:(834000)新疆克拉玛依准噶尔路29号。Email:wangjian_2605@126.com。
  • 基金资助:
    国家科技重大专项“典型盆地深层油气输导格架建立与油气成藏分析”(2017ZX05008-004-008)资助

Characteristics of high-quality glutenite reservoirs of Urho Formation in Manan area,Junggar Basin

WANG Jian1,2,3, ZHOU Lu1, JIN Jun2,3, XIANG Baoli2,3, HU Wenxuan4, YANG Yang2,3, KANG Xun4   

  1. 1. Stake Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu 610500, China;
    2. Research Institute of Experiment and Detection, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    3. Xinjiang Laboratory of Petroleum Reserve in Conglomerate, Karamay 834000, Xinjiang, China;
    4. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Received:2021-03-08 Revised:2021-06-08 Online:2021-10-01 Published:2021-09-30

摘要: 准噶尔盆地玛南地区乌尔禾组砂砾岩油藏具有规模勘探潜力,是增储上产的有利领域。综合应用岩矿鉴定、SEM,XRD、孔渗分析等手段,系统分析乌尔禾组沉积微相、储集空间类型及物性等储层特征和成岩作用。结果表明,该组沉积于浅水扇三角洲体系,发育了7种沉积微相,其中水下河道砂质细砾岩和砂岩物性较好,是储层发育的优势沉积相带。成岩过程中,压实作用、浊沸石等胶结作用显著破坏了原生粒间孔隙,但浊沸石胶结物以及长石碎屑的溶蚀产生了大量的次生孔隙。最终导致储集空间以次生孔隙为主,其次为剩余粒间孔和微裂缝。优质储层的分布受沉积微相、沸石胶结物类型与含量、地质流体活动强度等因素的影响,其发育具有沉积控制、断裂沟通、流体改造"三位一体"的成因模式。断裂沟通下伏烃源灶和水下河道等优势沉积相带,使酸性含油气流体活动增强,有利于浊沸石等矿物发生溶蚀。靠近断裂的水下河道叠置沉积层为乌尔禾组优质储层。

关键词: 扇三角洲, 砂砾岩储层, 储层成因, 乌尔禾组, 准噶尔盆地

Abstract: The glutenite reservoirs of Urho Formation in Manan area of Junggar Basin has large-scale exploration potential and is a favorable field for increasing reserves and production. The sedimentary microfacies, reservoir space types and reservoir properties of Urho Formation were systematically analyzed by means of rock and mineral identification, SEM, XRD and porosity and permeability analysis. The results show that Urho Formation was deposited in shallow water fan delta and seven sedimentary microfacies were developed, of which underwater channel sandy fine conglomerate and sandstone are the dominant sedimentary facies belt for reservoir development due to their good physical properties. During diagenesis, compaction and laumontite cementation significantly damaged primary intergranular pores, whereas the dissolution of laumontite cement and feldspar debris produced a large number of secondary pores. As a result, secondary pores became the dominant reservoir space, followed by residual intergranular pores and microfractures. Overall, the occurrence of high-quality reservoirs is mainly influenced by sedimentary microfacies, zeolite types and their content, and the activity intensity of acid geofluids charging these strata. The high-quality reservoirs were formed in a genesis model of sedimentary controlling-fault connectingacid fluid transforming. In the favorable microfacies such as subaqueous channel, when it had related to underlying source rocks by faults, the activity of acid hydrocarbon-bearing fluids was strong. The fluids promoted the dissolution of laumontite. The superimposed layers of subaqueous channels near the faults are high-quality reservoir of Urho Formation.

Key words: fan delta, glutenite reservoir, reservoir genesis, Urho Formation, Junggar Basin

中图分类号: 

  • TE122.2
[1] CANT D J, ETHIER V G. Lithology-dependent diagenetic control of reservoir properties of conglomerates, Falher member, Elmworth Field, Alberta. AAPG Bulletin, 1984, 68(8):1044-1054.
[2] BJØRLYKKE K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 2014, 301:1-14.
[3] MAHMIC O, DYPVIK H, HAMMER E. Diagenetic influence on reservoir quality evolution, examples from Triassic conglomerates/arenites in the Edvard Grieg field,Norwegian North Sea. Marine and Petroleum Geology, 2018, 93:247-271.
[4] 史基安, 何周, 丁超, 等. 准噶尔盆地西北缘克百地区二叠系沉积特征及沉积模式.沉积学报, 2010, 28(5):962-968. SHI J A, HE Z, DING C, et al. Sedimentary characteristics and model of Permian system in Ke-Bai area in the northwestern margin of Jungar Basin. Acta Sedimentologica Sinica, 2010, 28(5):962-968.
[5] 宫清顺, 黄革萍, 倪国辉, 等. 准噶尔盆地乌尔禾油田百口泉组冲积扇沉积特征及油气勘探意义. 沉积学报, 2010, 30(6):92-101. GONG Q S, HUANG G P, NI G H, et al. Characteristics of alluvial fan in Baikouquan Formation of Wuerhe oilfield in Junggar Basin and petroleum prospecting significance. Acta Sedimentologica Sinica, 2010, 30(6):92-101.
[6] 张顺存, 邹妞妞, 史基安, 等. 准噶尔盆地玛北地区三叠系百口泉组沉积模式. 石油与天然气地质, 2015, 36(4):641-650. ZHANG S C, ZOU N N, SHI J A, et al. Depositional model of the Triassic Baikouquan Formation in Mabei area of Junggar Basin. Oil & Gas Geology, 2015, 36(4):641-650.
[7] 唐勇, 徐洋, 李亚哲, 等. 玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义. 新疆石油地质, 2018, 39(1):16-22. TANG Y, XU Y, LI Y Z, et al. Sedimentation model and exploration significance of large-scaled shallow retrogradation fan delta in Mahu Sag. Xinjiang Petroleum Geology, 2018, 39(1):16-22.
[8] 靳军, 康逊, 胡文瑄, 等. 准噶尔盆地玛湖凹陷西斜坡百口泉组砂砾岩储层成岩作用及对储集性能的影响. 石油与天然气地质, 2017, 38(2):323-333. JIN J, KANG X, HU W X, et al. Diagenesis and its influence on coarse clastic reservoirs in the Baikouquan Formation of western slope of the Mahu Depression, Junngar Basin. Oil & Gas Geology, 2017, 38(2):323-333.
[9] 康逊, 胡文瑄, 曹剑, 等. 钾长石和钠长石差异溶蚀与含烃类流体的关系:以准噶尔盆地艾湖油田百口泉组为例. 石油学报, 2016, 37(11):1381-1393. KANG X, HU W X, CAO J, et al. Relationship between hydrocarbon bearing fluid and the differential corrosion of potash feldspar and albite:A case study of Baikouquan Formation in Aihu oilfield, Junggar Basin. Acta Petrolei Sinica, 2016, 37(11):1381-1393.
[10] KANG X, HU W X, CAO J, et al. Controls on reservoir quality in fan -deltaic conglomerates:Insight from the Lower Triassic Baikouquan Formation, Junggar Basin, China. Marine and Petroleum Geology, 2019, 103:55-75.
[11] 匡立春, 唐勇, 雷德文, 等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践. 中国石油勘探, 2014, 19(6):14-23. KUANG L C, TANG Y, LEI D W, et al. Exploration of fancontrolled large-area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Depression in Junggar Basin. China Petroleum Exploration, 2014, 19(6):14-23.
[12] 支东明, 唐勇, 郑孟林, 等. 玛湖凹陷源上砾岩大油区形成分布与勘探实践. 新疆石油地质, 2018, 39(1):1-8. ZHI D M, TANG Y, ZHENG M L, et al. Discovery, distribution, and exploration practice of large oil provinces of abovesource conglomerate in Mahu Sag. Xinjiang Petroleum Geology, 2018, 39(1):1-8.
[13] TAYLOR T R, GILES M R, HATHON L A, et al. Sandstone diagenesis and reservoir quality prediction:Models, myths, and reality. AAPG Bulletin, 2010, 94(8):1093-1132.
[14] 庞德新. 砂砾岩储层成因差异及其对储集物性的控制效应:以玛湖凹陷玛2井区下乌尔禾组为例. 岩性油气藏, 2015, 27(5):149-154. PANG D X. Sedimentary genesis of sand-conglomerate reservoir and its control effect on reservoir properties:A case study of the lower Urho Formation in Ma 2 well block of Mahu Depression. Lithologic Reservoirs, 2015, 27(5):149-154.
[15] 张有平, 盛世锋, 高祥录. 玛湖凹陷玛2井区下乌尔禾组扇三角洲沉积及有利储层分布. 岩性油气藏, 2015, 27(5):204-209. ZHANG Y P, SHENG S F, GAO X L. Fan delta sedimentation and favorable reservoir distribution of the lower Urho Formation in Ma 2 well block of Mahu Depression. Lithologic Reservoirs, 2015, 27(5):204-209.
[16] 马永平, 张献文, 朱卡, 等. 玛湖凹陷上乌尔禾组扇三角洲沉积特征及控制因素. 岩性油气藏, 2021, 33(1):1-13. MA Y P, ZHANG X W, ZHU K, et al. Sedimentary characteristics and controlling factors of fan-delta of Upper Urho Formation in Mahu Sag. Lithologic Reservoirs, 2021, 33(1):1-13.
[17] 汪孝敬, 李维锋,董宏,等. 砂砾岩岩相成因分类及扇三角洲沉积特征:以准噶尔盆地西北缘克拉玛依油田五八区上乌尔禾组为例. 新疆石油地质, 2017, 38(5):537-543. WANG X J, LI W F, DONG H, et al. Genetic classification of sandy conglomerate facies and sedimentary characteristics of fan delta:A case study from Upper Wuerhe Formation in district Wuba in northwestern margin of Junggar Basin. Xinjiang Petroleum Geology, 2017, 38(5):537-543.
[18] 邱楠生, 杨海波, 王绪龙. 准噶尔盆地构造-热演化特征. 地质科学, 2002, 37(4):423-429. QIU N S, YANG H B, WANG X L. Tectonic-thermal evolution in the Junggar Basin. Chinese Journal of Geology, 2002, 37(4):423-429.
[19] 蔡忠贤, 陈发景, 贾振远. 准噶尔盆地的类型和构造演化. 地学前缘, 2000, 7(4):431-440. CAI Z X, CHEN F J, JIA Z Y. Types and tectonic evolution of Junggar Basin. Earth Science Frontier, 2000, 7(4):431-440.
[20] HU W X, KANG X, CAO J, et al. Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin. Nature Communications, 2018, 32(3):188-200.
[21] 贾承造, 宋岩, 魏国齐, 等. 中国中西部前陆盆地的地质特征及油气聚集. 地学前缘, 2005, 12(3):3-13. JIA C Z, SONG Y, WEI G Q, et al. Geological features and petroleum accumulation in the foreland basins in central and western China. Earth Science Frontiers, 2005, 12(3):3-13.
[22] CAO J, ZHANG Y J, HU W X, et al. The Permian hybrid petroleum system in the northwestern margin of the Junggar Basin, northwest China. Marine and Petroleum Geology, 2005, 22(3):331-349.
[23] TAO K Y, CAO J, WANG Y C, et al. Geochemistry and origin of natural gas in the petroliferous Mahu Sag,northwestern Junggar Basin, NW China:Carboniferous marine and Permian lacustrine gas systems. Organic Geochemistry, 2016, 100(5):62-79.
[24] 朱世发, 朱筱敏, 王绪龙, 等. 准噶尔盆地西北缘二叠系沸石矿物成岩作用及对油气的意义. 中国科学:地球科学, 2011, 41(11):1602-1612. ZHU S F, ZHU X M, WANG X L, et al. Zeolite diagenesis and its control on petroleum reservoir quality of Permian in northwestern margin of Junggar Basin, China. Science China Earth Sciences, 2011, 41(11):1602-1612.
[25] 余兴, 尤新才, 白雨, 等.玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用. 岩性油气藏, 2021, 33(1):81-89. YU X, YOU X C, BAI Y, et al. Identification of faults in the south slope of Mahu Sag and its control on hydrocarbon accumulation. Lithologic Reservoirs, 2021, 33(1):81-89.
[1] 张本健, 田云英, 曾琪, 尹宏, 丁熊. 四川盆地西北部三叠系须三段砂砾岩沉积特征[J]. 岩性油气藏, 2021, 33(4): 20-28.
[2] 李祖兵, 崔俊峰, 宋舜尧, 成亚斌, 卢异, 陈岑. 黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J]. 岩性油气藏, 2021, 33(2): 81-92.
[3] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[4] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[5] 马永平, 张献文, 朱卡, 王国栋, 潘树新, 黄林军, 张寒, 关新. 玛湖凹陷二叠系上乌尔禾组扇三角洲沉积特征及控制因素[J]. 岩性油气藏, 2021, 33(1): 57-70.
[6] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[7] 余兴, 尤新才, 白雨, 李鹏, 朱涛. 玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J]. 岩性油气藏, 2021, 33(1): 81-89.
[8] 关新, 潘树新, 曲永强, 许多年, 张寒, 马永平, 王国栋, 陈雪珍. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力[J]. 岩性油气藏, 2021, 33(1): 90-98.
[9] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[10] 张闻亭, 龙礼文, 肖文华, 魏浩元, 李铁锋, 董震宇. 酒泉盆地青西凹陷窟窿山构造带下沟组沉积特征及储层预测[J]. 岩性油气藏, 2021, 33(1): 186-197.
[11] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[12] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[13] 雷海艳, 樊顺, 鲜本忠, 孟颖, 杨红霞, 晏奇, 齐婧. 玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制[J]. 岩性油气藏, 2020, 32(5): 102-112.
[14] 杨文杰, 胡明毅, 苏亚拉图, 刘昌, 元懿, 李金池. 松辽盆地苏家屯次洼初始裂陷期扇三角洲沉积特征[J]. 岩性油气藏, 2020, 32(4): 59-68.
[15] 曹旭升, 韩昀, 张继卓, 罗志伟. 渗吸效应对裂缝性低渗砾岩油藏开发的影响——以玛湖乌尔禾组储层为例[J]. 岩性油气藏, 2020, 32(4): 155-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!