岩性油气藏 ›› 2024, Vol. 36 ›› Issue (5): 111–121.doi: 10.12108/yxyqc.20240511

• 地质勘探 • 上一篇    下一篇

致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例

陈康1, 戴隽成1, 魏玮1, 刘伟方2, 闫媛媛1, 郗诚1, 吕龑1, 杨广广1   

  1. 1. 中国石油西南油气田公司 勘探开发研究院, 成都 610041;
    2. 极遨技术服务(北京)有限公司, 北京 100004
  • 收稿日期:2024-02-01 修回日期:2024-04-10 出版日期:2024-09-01 发布日期:2024-09-04
  • 第一作者:陈康(1988—),男,硕士,高级工程师,主要从事地震资料处理解释方面的研究工作。地址:(610041)四川省成都市高新区天府大道北段12号中国石油西南油气田公司勘探开发研究院。Email:chenkang01@petrochina.com.cn。
  • 通信作者: 刘伟方(1969—),男,博士,高级工程师,主要从事地震综合解释方面的研究工作。Email:435236940@qq.com。
  • 基金资助:
    中国石油西南油气田公司科技重大专项“四川盆地中西部地区致密气勘探开发理论及关键技术研究”(编号:2022ZD01-01)资助。

Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin

CHEN Kang1, DAI Juncheng1, WEI Wei1, LIU Weifang2, YAN Yuanyuan1, XI Cheng1, LYU Yan1, YANG Guangguang1   

  1. 1. Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Field Company, Chengdu 610041, China;
    2. GeoSoftware Technology Services(Beijing)Co., Ltd., Beijing 100004, China
  • Received:2024-02-01 Revised:2024-04-10 Online:2024-09-01 Published:2024-09-04

摘要: 地震勘探中“高速或低速致密砂岩储层”地震响应复杂、非均质性强、反演中的低频模型难以建立。在基于Bayesian分类的AVO(BF-AVO)截距、梯度属性及孔隙度等指标约束下,对川中地区侏罗系沙溪庙组致密砂岩的岩相进行了划分。研究结果表明:①AVO分析是以弹性波理论为基础,根据其振幅随偏移距的变化规律来反映地下岩性及其孔隙流体的性质,在应用过程中,根据不同岩性和流体的相关参数组合进行AVO正演,获得已知岩性和流体性质的AVO特征,与实际地震记录进行对比,建立岩性和油气识别的地震响应模型。②利用模型和实际数据建立的孔隙度与截距、梯度属性的交会分析,厘清三者的内在联系,确定岩相划分标准,并拟合出不同岩相的概率密度函数,划分出不同孔隙度区间的岩相,从而实现孔隙度的半定量预测。③川中侏罗系沙溪庙组沙一段致密砂岩的岩相预测过程中,基于Bayesian分类,以概率分布预测的岩相与实钻结果吻合度高,达93.75%,验证了该方法的可行性和有效性。

关键词: 致密砂岩, 岩相预测, 孔隙度, AVO属性, Bayesian分类, 沙溪庙组, 侏罗系, 四川盆地

Abstract: In seismic exploration,high-velocity or low-velocity tight sandstone reservoirs are often characterized by complex seismic response and strong heterogeneity,and it is difficult to establish a low-frequency model in inversion. With the constraints of AVO intercept and gradient attribute based on Bayesian classification and porosity, the lithofacies of the tight sandstone of Jurassic Shaximiao Formation in central Sichuan Basin was classified. The results show that:(1)Based on elastic wave theory,AVO analysis reflects the underground lithologies and pore fluid properties according to the variation of amplitude with offset. In the application process,AVO forward modeling was carried out based on the relevant parameter combination of different lithologies and fluids,AVO characteristics of known lithologies and fluid properties were obtained and compared with actual seismic records,and then a seismic response model for lithologies and oil and gas identification was established.(2)The crossplot analysis of porosity,intercept and gradient attributes established by model and actual data was used to clarify the internal relationship between the three,determine the classification criteria of lithofacies,fit the probability density function of different lithofacies,and divide the lithofacies of different porosity intervals,to realize the semi-quantitative prediction of porosity.(3)In the application of tight sandstone of the first member of Jurassic Shaximiao Formation in central Sichuan Basin,the lithofacies predicted by probability distribution based on Bayesian classification is up to 93.75% consistent with the actual drilling results,which verifies the feasibility and effectiveness of the method.

Key words: tight sandstone, lithofacies prediction, porosity, AVO attributes, Bayesian classification, Shaximiao Formation, Jurassic, Sichuan Basin

中图分类号: 

  • TE122.1
[1] 杨雨, 谢继容, 曹正林, 等. 四川盆地天府气田沙溪庙组大型致密砂岩气藏形成条件及勘探开发关键技术[J]. 石油学报, 2023, 44(6):917-932. YANG Yu, XIE Jirong, CAO Zhenglin, et al. Forming conditions and key technologies for exploration and development of large tight sandstone gas reservoirs in Shaximiao Formation, Tianfu gas field of Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(6):917-932.
[2] 邹才能, 陶士振, 袁选俊, 等. 连续型油气藏形成条件与分布特征[J]. 石油学报, 2009, 30(3):324-331. ZOU Caineng, TAO Shizhen, YUAN Xuanjun, et al. The formation conditions and distribution characteristics of continuous petroleum accumulations[J]. Acta Petrolei Sinica, 2009, 30(3):324-331.
[3] 叶泰然, 刘兴艳, 苏锦义. 地震分频解释技术在川西陆相砂岩储层预测中的应用[J]. 天然气工业, 2007, 27(增刊1):454-456. YE Tairan, LIU Xingyan, SU Jinyi. Application of seismic frequency division interpretation technology in continental sandstone reservoir prediction in western Sichuan[J]. Natural Gas Industry, 2007, 27(Suppl 1):454-456.
[4] 付菊, 伍玲, 李刚, 等. 川西坳陷中段合兴场-丰谷地区沙溪庙组沉积相研究[J]. 岩性油气藏, 2014, 26(1):75-79. FU Ju, WU Ling, LI Gang, et al. Sedimentary facies of Shaximiao Formation in Hexingchang-Fenggu area at the middle part of western Sichuan Depression[J]. Lithologic Reservoirs, 2014, 26(1):75-79.
[5] 邓浩阳, 司马立强, 吴玟, 等. 致密砂岩储层孔隙结构分形研究与渗透率计算:以川西坳陷蓬莱镇组、沙溪庙组储层为例[J]. 岩性油气藏, 2018, 30(6):76-82. DENG Haoyang, SIMA Liqiang, WU Wen, et al. Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs:A case of Penglaizhen Formation and Shaximiao Formation in western Sichuan Depression[J]. Lithologic Reservoirs, 2018, 30(6):76-82.
[6] ILKHCHI R K, HARAMI R M, REZAEE R, et al. Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range field in the Perth Basin, western Australia[J]. Journal of Natural Gas Science and Engineering, 2014, 21:1073-1083.
[7] DURRANI M Z A, RAHMAN S A, TALIB M, et al. Rock physics assisted pre-stack AVA simultaneous inversion for lithofacies and porosity prediction of deeply buried mixed sedimentary reservoirs in Potwar Basin, Onshore Pakistan[J]. Journal of Applied Geophysics, 2022, 205(10):104766.
[8] ILKHCHI R K, KADKHODAIE A, REZAEE R, et al. Unraveling the reservoir heterogeneity of the tight gas sandstones using the porosity conditioned facies modeling in the Whicher Range field, Perth Basin, western Australia[J]. Journal of Petroleum Science and Engineering, 2019, 176:97-115.
[9] GULIYEV E, DAVIS T L. Interpretation of Vp/Vs velocity ratio for improved tight gas sandstone reservoir characterization, Rulison field, Colorado[R]. San Antonio, Texas:2007 SEG Annual Meeting, 2007.
[10] RUMON M, DAVIS T. Shear wave time-lapse seismic monitoring of a tight gas sandstone reservoir, Rulison Field, Colorado[R]. New Orleans, Louisiana:2006 SEG Annual Meeting, 2006.
[11] WONG J, STEWART R R. Crosswell seismic imaging of a tight-gas reservoir[G]. SEG Technical Program Expanded Abstracts, 2007:3124.
[12] 刘桓, 苏勤, 曾华会, 等. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3):104-112. LIU Huan, SU Qin, ZENG Huahui, et al. Application of nearsurface Q compensation technology in tight gas exploration in central Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3):104-112.
[13] 赵邦六, 张宇生, 曾忠, 等. 川中地区侏罗系沙溪庙组致密气处理和解释关键技术与应用[J]. 石油地球物理勘探, 2021, 56(6):1370-1380. ZHAO Bangliu, ZHANG Yusheng, ZENG Zhong, et al. Key technology and application of processing and interpretation of tight gas in Jurassic Shaximiao Formation in Central Sichuan Basin[J]. Oil Geophysical Prospecting, 2021, 56(6):1370-1380.
[14] 李勇根, 徐胜峰. 地震岩石物理和正演模拟技术在致密砂岩储层预测中的应用研究[J]. 石油天然气学报, 2008, 30(6):61-65. LI Yonggen, XU Shengfeng. Application of seismic rock physics and forward simulation in predicting tight sandstone reservoirs[J]. Journal of Oil and Gas Technology, 2008, 30(6):61-65.
[15] 汪关妹, 张万福, 张宏伟, 等. 致密砂岩气地震预测关键技术及效果[J]. 石油地球物理勘探, 2020, 55(增刊1):72-79. WANG Guanmei, ZHANG Wanfu, ZHANG Hongwei, et al. Key technology and effect of prediction of tight sandstone gas based on seismic data[J]. Oil Geophysical Prospecting, 2020, 55(Suppl 1):72-79.
[16] 曹卿荣, 李佩, 孙凯, 等. 应用地震属性分析技术刻画河道砂体[J]. 岩性油气藏, 2007, 19(2):93-96. CAO Qingrong, LI Pei, SUN Kai, et al. Using seismic attributes to identify channel sand body[J]. Lithologic Reservoirs, 2007, 19(2):93-96.
[17] 董宁, 刘振峰, 周小鹰, 等. 鄂尔多斯盆地致密碎屑岩储层地震识别及预测[J]. 石油与天然气地质, 2008, 29(5):668-675. DONG Ning, LIU Zhenfeng, ZHOU Xiaoying, et al. Seismic detection and prediction of tight gas reservoirs in the Ordos Basin[J]. Oil & Gas Geology, 2008, 29(5):668-675.
[18] 武恒志, 叶泰然, 赵迪, 等. 川西坳陷陆相致密气藏河道砂岩储层精细刻画技术及其应用[J]. 石油与天然气地质, 2015, 36(2):230-239. WU Hengzhi, YE Tairan, ZHAO Di, et al. Fine characterization technique and its application to channel sandstone in continental tight gas reservoirs of western Sichuan Depression[J]. Oil & Gas Geology, 2015, 36(2):230-239.
[19] 朱讯, 肖富森, 洪海涛, 等. 四川盆地中部地区致密河道砂岩气藏高产井地震模式及井轨迹设计[J]. 天然气勘探与开发, 2020, 43(3):86-93. ZHU Xun, XIAO Fusen, HONG Haitao, et al. Seismic model and wellbore trajectory design for high-yield wells of tight channel sandstone gas reservoirs, central Sichuan Basin[J]. Natural Gas Exploration and Development, 2020, 43(3):86-93.
[20] 郝会民, 徐礼贵, 张宇生. 非常规油气地震勘探技术及应用新进展[R]. 北京:中国油气论坛2011-非常规油气勘探开发技术专题研讨会, 2011. HAO Huimin, XU Ligui, ZHANG Yusheng. New progress in unconventional oil and gas seismic exploration technology and its application[R]. Beijing:China Oil and Gas Forum 2011-Special Symposium on Unconventional Oil and Gas Exploration and Development Technology, 2011.
[21] 严谨, 史云清. 中国致密气开发技术进展及展望[J]. 矿山工程, 2021, 9(1):36-45. YAN Jin, SHI Yunqing. Development and prospect of tight gas in China[J]. Mine Engineering, 2021, 9(1):36-45.
[22] HILTERMAN F J.地震振幅解释[M]. 孙夕平, 赵良武, 译.北京:石油工业出版社, 2006. HILTERMAN F J. Seismic Amplitude Interpretaion[M]. SUN Xiping, ZHAO Liangwu, translate. Bejing:Petroleum Industry Press, 2006.
[23] RUTHERFORD S R, WILLIAMS R H. Amplitude-versus-offset variations in gas sand[J]. Geophysics, 1989, 54(6):680-688.
[24] CASTAGNA J P, SWAN H W. Principles of AVO crossplotting[J]. The Leading Edge, 1997, 16(4):337-342.
[25] CASTAGNA J P, SWAN H W, FOSTER D J. Framework for AVO gradient and intercept interpretation[J]. Geophysics, 1998, 63(3):948-956.
[26] ROSS C P, KINMAN D L. Nonbright-spot AVO:Two examples[J]. Geophysics, 1995, 60(5):1398-1408.
[27] AVSETH P, MUKERJI T, MAVKO G. Quantitative seismic interpretation:Applying rock physics tools to reduce interpretation risk[M]. New York:Cambridge University Press, 2005.
[28] BULAND A, OMRE H. Bayesian linearized AVO inversion[J]. Geophysics, 2003, 68(1):185-198.
[29] CIZEK V. Discrete Hilbert Transform[J]. IEEE Transactions on Audio and Electroacoustics, 1970, 18(4):340-343.
[30] 夏红敏, 王尚旭, 李生杰. 含气地层的AVO响应分析:以苏4井为例[J]. 石油物探, 2006, 45(4):357-361. XIA Hongmin, WANG Shangxu, LI Shengjie. AVO analysis on gas-bearing layer[J]. Geophysical Prospecting for Petroleum, 2006, 45(4):357-361.
[31] 潘仁芳, 陈思路, 张利萍, 等. 含气砂岩AVO正演的半定量分析[J]. 石油地球物理勘探, 2013, 48(1):103-108. PAN Renfang, CHEN Silu, ZHANG Liping, et al. Semiquantitative analysis of gas bearing sand by AVO forward modeling[J]. Oil Geophysical Prospecting, 2013, 48(1):103-108.
[32] 王迪, 张益明, 刘志斌, 等. AVO定量解释模版在LX地区致密气"甜点"预测中的应用[J]. 石油物探, 2020, 59(6):936-948. WANG Di, ZHANG Yiming, LIU Zhibin, et al. Application of an AVO template to identify sweet spots in a tight sandstone reservoir in the LX area[J]. Geophysical Prospecting for Petroleum, 2020, 59(6):936-948.
[33] FOSTER D J, KEYS R G, LANE F D. Interpretation of AVO anomalies[J]. Geophysics, 2010, 75(5):75A3-75A13.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[3] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[4] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[5] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[6] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[7] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[8] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[9] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[10] 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34.
[11] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[12] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[13] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[14] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[15] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[5] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[6] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[7] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[8] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[9] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[10] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .