岩性油气藏 ›› 2024, Vol. 36 ›› Issue (5): 178–188.doi: 10.12108/yxyqc.20240517

• 石油工程与油气田开发 • 上一篇    

顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策

苏皓1, 郭艳东1, 曹立迎1, 喻宸1, 崔书岳1, 卢婷1, 张云2, 李俊超3   

  1. 1. 中国石化石油勘探开发研究院, 北京 100083;
    2. 中国石化西北油田分公司 勘探开发研究院, 乌鲁木齐 830011;
    3. 西安石油大学 机械工程学院, 西安 710065
  • 收稿日期:2023-04-03 修回日期:2023-06-18 出版日期:2024-09-01 发布日期:2024-09-04
  • 第一作者:苏皓(1990—),男,博士,副研究员,主要从事缝洞型油气藏开发方面的研究工作。地址:(102206)北京市昌平区沙河镇百沙路5号中国石化科学技术研究中心。Email:suhao0912@qq.com。
  • 基金资助:
    中国石油化工股份有限公司科技部项目“顺北深层断溶体油藏描述及可采储量定量表征”(编号:P21064-1)资助。

Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield

SU Hao1, GUO Yandong1, CAO Liying1, YU Chen1, CUI Shuyue1, LU Ting1, ZHANG Yun2, LI Junchao3   

  1. 1. Sinopec Research Institute of Petroleum Exploration and Production, Beijing 100083, China;
    2. Research Institute of Exploration and Production, Sinopec Northwest Oilfield Company, Urumqi 830011, Xinjiang, China;
    3. College of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China
  • Received:2023-04-03 Revised:2023-06-18 Online:2024-09-01 Published:2024-09-04

摘要: 顺北油田断控缝洞型凝析气藏具有特殊的地质条件,开采难度大。基于顺北油田气藏实际参数,采用建模-数模一体化定量分析方法,对断控缝洞型凝析气藏的衰竭式开采特征进行了刻画,并制定了相应的保压开采对策。研究结果表明:①针对不同的介质相类型,采用地球物理属性雕刻的分级建模方法,得到融合的三维储集体模型;基于波阻抗、测井数据、试井解释数据,采用人机交互、逐级嵌套的构建方法得到三维孔渗模型;结合由流体高压物性实验拟合得到的流体模型,可得到代表地区特征的断控缝洞凝析气藏多组分数值模拟模型。②反凝析作用、应力敏感性是制约此类凝析气藏衰竭开发效果的两大因素:反凝析作用使油的稳产时间缩短、气油比变大、累产油减少;应力敏感性储层在一定应力作用下裂缝可能发生闭合,导致部分与裂缝连通的储量无法动用。③CH4是保压开发的最优注入介质,以略高于露点压力进行保压补能,其增油效果最好;注采速度和注入时间均与增油量呈正相关关系,但换油率随注入量的增加而减小;对于井组单元采用先持续注采、后脉冲注持续采的方式,其防窜增油效果最好,对于孤立的井单元可采用单井吞吐注采方式提高凝析油采收率;注入井和采出井部署在同一洞内有利于对洞内储量的定向驱替,保证注采井间有足够距离,有利于预防气窜和增加波及范围。

关键词: 数值模型, 衰竭开发, 反凝析作用, 应力敏感性, 保压开采, 开发对策, 提高采收率, 凝析气藏, 断控缝洞型储层, 顺北油田

Abstract: The fault-controlled fracture-cavity condensate gas reservoirs in Shunbei Oilfield have special geological conditions and are difficult to develop. Based on the actual parameters of the gas reservoirs in Shunbei Oilfield,a quantitative analysis method integrated modeling and simulation was used to characterize the natural depletion of fault-controlled fracture-cavity condensate gas reservoirs,and corresponding pressure maintenance strategies were formulated. The results show that:(1)A hierarchical modeling method based on geophysical attribute depiction was adopted for different types of facies to obtain a fused three-dimensional reservoir facies model. Based on the data of wave impedance,logging data,and well testing interpretation,a three-dimensional porosity model and permeability model was obtained by using human-computer interaction and gradual nesting method. On this basis of two models,combined the fluid model obtained from PVT experiments,a multi-component numerical simulation model representing the characteristics of the fault-controlled fracture-cavity condensate gas reservoirs in the region can be obtained.(2)Retrograde condensation and stress sensitivity are two major factors that constrain the natural depletion development effect of such condensate gas reservoirs. The retrograde condensation shortens the stable production time of oil,increases the gas oil ratio,and reduces cumulative oil production. Fractures in reservoirs with stress sensitivity may close under certain stress conditions,resulting in the difficulty to produce some reserves connected to the fractures.(3)CH4 is the optimal injection medium for pressure maintenance development,and the best injection effect occurs when it is injected slightly above the dew point pressure. Injection-production rate and injection time are positively correlated with the oil production increment,but the oil replacement rate decreases as the injection volume increases. For the injection-production well group,the scheme which adopts continuous injection and production mode first and then switch to pulse injection and continuous production mode is the best strategy for increasing oil production while preventing gas channeling. For the isolated well,the huff and puff injection and production method can be used to improve the condensate oil recovery. Further,both the injection and production wells are deployed in a cave,which is easier to make the injected gas act on the main reserves in the cave and drive out the main reserves in a directional way. Meanwhile,ensuring sufficient distance between injection and production wells is beneficial for preventing gas channeling and increasing the swept volume.

Key words: numerical model, natural depletion, retrograde condensation, stress sensitivity, pressure maintenance development, development strategy, enhanced oil recovery, condensate gas reservoir, fault-controlled fracture-cavity reservoir, Shunbei Oilfield

中图分类号: 

  • TE319
[1] 倪新锋, 沈安江, 乔占峰, 等. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2):144-158. NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, et al. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(2):144-158.
[2] 马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1):1-17. MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1):1-17.
[3] 卜旭强, 王来源, 朱莲花, 等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3):152-160. BU Xuqiang, WANG Laiyuan, ZHU Lianhua, et al. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(3):152-160.
[4] 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征:以顺北油气田为例[J]. 石油学报, 2022, 43(6):770-787. YUN Lu, DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation:A case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6):770-787.
[5] 彭军, 夏梦, 曹飞, 等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2):17-30. PENG Jun, XIA Meng, CAO Fei, et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2):17-30.
[6] BAKER R O, TELESFORD A, WONG S, et al. An integrated fracture characterization of a heavy oil naturally fractured carbonate reservoir[R]. Calgary, Alberta:Canadian International Petroleum Conference, 2001.
[7] JEAN-HECTOR De G, ZOORMAND G H, MOHAMMAD G, et al. A case study on redevelopment of a giant highly fractured carbonate reservoir in Iran based on integrated reservoir characterization and 3 D modeling studies[R]. SPE 93760, 2005.
[8] LUIS G, ANTONIO C S, VICTOR A, et al. Integrated reservoir characteristic of a fractured carbonate reservoir[R]. SPE 58995, 2000.
[9] QADIR S, HAQUE A, AHMED N, et al, Comparison of different enhanced oil recovery techniques for better oil productivity[J]. International Journal of Applied Science and Technology, 2011, 1(5):143-153.
[10] 包友书, 王永诗, 李政, 等. 济阳坳陷深层沙河街组四段轻质油-凝析气成藏条件[J]. 石油学报, 2021, 42(12):1615-1624. BAO Shuyou, WANG Yongshi, LI Zheng, et al. Accumulation conditions for deep light oil and condensate gas from member 4 of Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica, 2021, 42(12):1615-1624.
[11] 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1):25-38. XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1):25-38.
[12] 江同文, 孙龙德, 谢伟, 等. 凝析气藏循环注气三元开发机理与提高凝析油采收率新技术[J]. 石油学报, 2021, 42(12):1654-1664. JIANG Tongwen, SUN Longde, XIE Wei, et al. Three-element development mechanism of cyclic gas injection in condensate gas reservoirs and a new technique of enhancing condensate oil recovery[J]. Acta Petrolei Sinica, 2021, 42(12):1654-1664.
[13] 胡永乐, 李保柱, 孙志道. 凝析气藏开采方式的选择[J]. 天然气地球科学, 2003, 14(5):398-401. HU Yongle, LI Baozhu, SUN Zhidao. Choice of development methods of gas condensate reservoirs[J]. Natural Gas Geoscience, 2003, 14(5):398-401.
[14] 王素英, 张翔, 田景春, 等. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5):81-94. WANG Suying, ZHANG Xiang, TIAN Jingchun, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5):81-94.
[15] 李爱芬, 范新昊, 高占武, 等. 缝洞型凝析气藏衰竭开采影响因素实验[J]. 特种油气藏, 2022, 29(4):96-100. LI Aifeng, FAN Xinhao, GAO Zhanwu, et al. Experiment on influencing factors of natural depletion of fractured-vuggy condensate gas reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(4):96-100.
[16] 徐壮, 石万忠, 王任, 等. 塔北隆起西部地区白垩系碎屑岩油气成藏规律及成藏模式[J]. 岩性油气藏, 2023, 35(2):31-46. XU Zhuang, SHI Wanzhong, WANG Ren, et al. Hydrocarbon accumulation law and model of Cretaceous clastic rocks in western Tabei uplift[J]. Lithologic Reservoirs, 2023, 35(2):31-46.
[17] 邓兴梁, 郭平, 蒋光迹. 裂缝-孔洞型凝析气藏不同开发方式的长岩心实验[J]. 天然气工业, 2011, 31(6):60-62. DENG Xingliang, GUO Ping, JIANG Guangji. A long-core experimental study of different development schemes on fractured cavernous gas condensate reservoirs[J]. Natural Gas Industry, 2011, 31(6):60-62.
[18] 李冬梅, 李会会, 朱苏阳, 等. 断溶体油气藏流动物质平衡方法[J]. 岩性油气藏, 2022, 34(1):154-162. LI Dongmei, LI Huihui, ZHU Suyang, et al. Modified flowing material balance method for fault-karst reservoirs[J]. Lithologic Reservoirs, 2022, 34(1):154-162.
[19] 郭平, 涂汉敏, 汪周华, 等. 关于凝析气藏开采速度的讨论[J]. 科学技术与工程, 2016, 16(31):31-35. GUO Ping, TU Hanmin, WANG Zhouhua, et al. Discussion about the exploitation rate of gas condensate reservoirs[J]. Science Technology and Engineering, 2016, 16(31):31-35.
[20] 肖阳, 康博, 邓兴梁, 等. 缝洞型碳酸盐岩凝析气藏不同开发方式全直径物理模拟研究[J]. 新疆石油天然气, 2012, 8(1):58-61. XIAO Yang, KANG Bo, LIANG Xingliang, et al. The physical simulation research of full diameter core for different development way of fractured-vuggy carbonate gas condensate reservoir[J]. Xinjiang Oil & Gas, 2012, 8(1):58-61.
[21] 张雄, 王晓之, 郭天魁, 等. 顺北油田缝内转向压裂暂堵剂评价实验[J]. 岩性油气藏, 2020, 32(5):170-176. ZHANG Xiong, WANG Xiaozhi, GUO Tiankui, et al. Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield[J]. Lithologic Reservoirs, 2020, 32(5):170-176.
[22] 刘宝增, 漆立新, 李宗杰, 等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报, 2020, 41(4):412-420. LIU Baozeng, QI Lixin, LI Zongjie, et al. Spatial characterization and quantitative description technology for ultra-deep faultkarst reservoirs in the Shunbei area[J]. Acta Petrolei Sinica, 2020, 41(4):412-420.
[23] 黄磊, 康凯, 张雷, 等. 凝析气藏PVT实验数据合格性的判别方法[J]. 断块油气田, 2022, 29(3):390-394. HUANG Lei, KANG Kai, ZHANG Lei, et al. Distinguishing method for conformity of PVT data for condensate gas reservoirs[J]. Fault-Block Oil & Gas Field, 2022, 29(3):390-394.
[24] 史林祥. 凝析气藏相态特征及其开发规律研究[D]. 北京:中国地质大学(北京), 2019. SHI Linxiang. Study on phase characteristics and development law of condensate gas reservoir[D]. Beijing:China University of Geosciences(Beijing), 2019.
[25] 杨春. 对应力敏感的缝洞型岩石压缩系数的探讨[J]. 钻采工艺, 2020, 43(6):41-43. YANG Chun. Calculation equation of fractured-vuggy rock compressibility considering stress sensitivity[J]. Drilling & Production Technology, 2020, 43(6):41-43.
[26] 张艺晓, 李小波, 尚根华, 等. 断溶体油藏应力敏感特征研究[J]. 油气藏评价与开发, 2023, 13(1):127-134. ZHANG Yixiao, LI Xiaobo, SHANG Genhua, et al. Stress sensitive characteristics of fault-karst reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1):127-134.
[27] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4):150-158. SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield[J]. Lithologic Reservoirs, 2022, 34(4):150-158.
[28] 焦玉卫, 李保柱, 王博, 等. 凝析气藏循环注气驱替机理研究[J]. 新疆石油天然气, 2010, 6(4):63-66. JIAO Yuwei, LI Baozhu, WANG Bo, et al. Research on mechanisms of cycling reinjection in gas condensate reservoir[J]. Xinjiang Oil & Gas, 2010, 6(4):63-66.
[1] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[2] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[3] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[4] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[5] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[6] 王金铎, 曾治平, 徐冰冰, 李超, 刘德志, 范婕, 李松涛, 张增宝. 准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J]. 岩性油气藏, 2024, 36(1): 23-31.
[7] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[8] 张雄, 王晓之, 郭天魁, 赵海洋, 李兆敏, 杨斌, 曲占庆. 顺北油田缝内转向压裂暂堵剂评价实验[J]. 岩性油气藏, 2020, 32(5): 170-176.
[9] 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133.
[10] 韩培慧, 闫坤, 曹瑞波, 高淑玲, 佟卉. 聚驱后油层提高采收率驱油方法[J]. 岩性油气藏, 2019, 31(2): 143-150.
[11] 姜瑞忠, 沈泽阳, 崔永正, 张福蕾, 张春光, 原建伟. 双重介质低渗油藏斜井压力动态特征分析[J]. 岩性油气藏, 2018, 30(6): 131-137.
[12] 刘晨, 王凯, 王业飞, 周文胜. 针对A油田的抗温、抗盐聚合物/表面活性剂二元复合驱油体系研究[J]. 岩性油气藏, 2017, 29(3): 152-158.
[13] 李海涛,李 颖,李亚辉,王 科. 低盐度注水提高碳酸盐岩油藏采收率[J]. 岩性油气藏, 2016, 28(2): 119-126.
[14] 李 军,张军华,谭明友,崔世凌,曲志鹏,于景强. CO2驱油及其地震监测技术的国内外研究现状[J]. 岩性油气藏, 2016, 28(1): 128-134.
[15] 陈 军,秦 柯,任洪伟,尹双江,李 冰. 利用气藏生产指示曲线计算凝析气藏水侵量[J]. 岩性油气藏, 2015, 27(2): 103-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[5] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[6] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[7] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[8] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[9] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[10] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .