岩性油气藏 ›› 2024, Vol. 36 ›› Issue (6): 23–35.doi: 10.12108/yxyqc.20240603

• 地质勘探 • 上一篇    下一篇

准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术

李道清1, 陈永波2, 杨东3, 李啸1, 苏航1, 周俊峰2, 仇庭聪2, 石小茜2   

  1. 1. 中国石油新疆油田公司 勘探开发研究院, 新疆 克拉玛依 834000;
    2. 中国石油勘探开发研究院西北分院, 兰州 730020;
    3. 中国石油集团渤海钻探工程有限公司 井下作业分公司, 河北 任丘 062552
  • 收稿日期:2023-10-31 修回日期:2024-02-03 出版日期:2024-11-01 发布日期:2024-11-04
  • 第一作者:李道清(1982—),男,硕士,高级工程师,主要从事天然气地质综合研究。地址:(834000)新疆维吾尔自治区克拉玛依市准噶尔路32号。Email:lidaoq@petrochina.com.cn
  • 通信作者: 陈永波(1966—),男,硕士,高级工程师,主要从事地震资料解释和油藏描述研究工作。Email:chenyb@petrochina.com.cn
  • 基金资助:
    中国石油天然气股份有限公司前瞻性基础性重大科技专项“叠合盆地中下组合规模圈闭形成机制与有效性研究”(编号:2023ZZ0205)、“深地煤岩气开发优化设计关键技术研究”(编号:2023ZZ18YJ04)联合资助。

Intelligent comprehensive prediction technology of coalbed methane “sweet spot”reservoir of Jurassic Xishanyao Formation in Baijiahai uplift,Junggar Basin

LI Daoqing1, CHEN Yongbo2, YANG Dong3, LI Xiao1, SU Hang1, ZHOU Junfeng2, QIU Tingcong2, SHI Xiaoqian2   

  1. 1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang 834000, China;
    2. PetroChina Research Institute of Exploration and Development-Northwest, Lanzhou 730020, China;
    3. Downhole Services company BHDC, Renqiu 062552, Hebei, China
  • Received:2023-10-31 Revised:2024-02-03 Online:2024-11-01 Published:2024-11-04

摘要: 为了解决准噶尔盆地白家海凸起侏罗系西山窑组煤岩厚度小、气源断裂垂向断距小导致的地震资料信噪比低及煤岩气“甜点”储层预测难度大的问题,提出了“五步法”逐级控制的测井-地质-地震一体化智能综合预测方法。研究结果表明:①“五步法”是利用构造保边去噪和谐波高频恢复处理技术提高叠前CRP道集的信噪比和分辨率;通过调谐厚度法和分频智能反演法相结合定量预测煤岩厚度分布;利用深度学习智能断裂检测技术预测气源断裂展布特征;基于煤岩流体替换对不同含气饱和度时的AVO特征进行分析,通过含气饱和度预测含气分布范围;采用叠合分析法预测“甜点”储层,即位于断鼻(或断块)、煤岩厚度大,存在气源断裂及含气饱和度高于50%的叠合部位。②研究区“甜点”主要分布在北部走滑断裂的南北两侧断鼻或断块圈闭中,共发育31个煤岩气“甜点”区,累计面积达231.9 km2,其中走滑断裂北侧的5个“甜点”储层勘探潜力更大。③依据“五步法”部署的预探井与实钻井考核指标的吻合率达92%;对部署的水平井井轨迹进行了优化设计和动态监控,提高了单井产能。

关键词: 煤岩气, 叠前CRP道集处理, 分频智能反演, 智能断裂检测, 深度学习, “甜点”预测, 西山窑组, 侏罗系, 白家海凸起, 准噶尔盆地

Abstract: In order to solve the problems of small coal thickness,small vertical fault distance of gas source fault,low signal-to-noise ratio of seismic data and difficult to predict the sweet spot reservoir of coal,rock and gas in Baijiahai uplift,Junggar basin. A“five-step method”is proposed,which is controlled stepwise. The re sults show that:(1)“Five-step”comprehensive technology provides a powerful technical means for coalbed methane“sweet spot”reservoir prediction,The specific method is to improve the signal-to-noise ratio and resolu tion of CRP gathers using construction edge preserving denoising and harmonic high-frequency recovery processing techniques;The combination of tuning thickness method and frequency division intelligent inversion method, the thickness distribution range of coalbed section and plane is quantitatively predicted;The deep learning intel ligent fracture detection technology was used to predict the fracture profile and plane distribution characteristics of gas source;Analysis of AVO characteristics with different gas saturation based on fluid replacement of coal and rock,the gas saturation is used to predict the gas distribution range in the study area;The“sweet spot”reser voir is located in the superposition of broken nose(or fault block),large coal rock thickness,gas source fracture and high gas saturation.(2)The“sweet spot”is mainly distributed in the fault nose or block trap on the north and south sides of the strike-slip fault in the northern part of the work area,A total of 31 coalbed methane“sweet spot”regions have developed,with a cumulative area of 231.9 km2,The exploration potential of the five“sweet spot”reservoirs on the north side of the strike-slip fault is greater.(3)The coincidence rate between the test index of the vertical well deployed by the research results and the real drilling results is 92%. At the same time, the trajectory of the horizontal well can be optimized and dynamically monitored to improve the productivity of a single well.

Key words: coalbed methane, prestack CRP gathers processing, intelligent inversion of frequency division, intelligent fracture detection, deep learning, “sweet spot”prediction, Xishanyao Formation, Jurassic, Baijiahai uplift, Junggar Basin

中图分类号: 

  • TE122
[1] 李国欣,朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探,2020,25(2):1-13. LI Guoxin,ZHU Rukai. Progress,challenges and key issues in the unconventional oil and gas development of CNPC[J]. China Petroleum Exploration,2020,25(2):1-13.
[2] 张懿,朱光辉,郑求根,等. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气,2022,9(4):1-8. ZHANG Yi,ZHU Guanghui,ZHENG Qiugen,et al. Distribu tion characteristics of coalbed methane resources in China and recommendations for exploration research[J]. Unconventional Oil & Gas,2022,9(4):1-8.
[3] 何海清,支东明,雷德文,等. 准噶尔盆地南缘高泉背斜战略突破与下组合勘探领域评价[J]. 中国石油勘探,2019,24(2):137-146. HE Haiqing,ZHI Dongming,LEI Dewen,et al. Strategic break through in Gaoquan anticline and exploration assessment on lower assemblage in the southern margin of Junggar Basin[J]. China Petroleum Exploration,2019,24(2):137-146.
[4] 支东明,薛冽,王屿涛,等. 准噶尔盆地煤岩气资源及勘探潜力[M]. 北京:石油工业出版社,2009. ZHI Dongming,XUE Lie,WANG Yutao,et al. Coalbed meth ane resources and exploration potential in Junggar Basin[M]. Beijing:Petroleum Industry Press,2009.
[5] 杜世涛,安庆,常智泰,等. 新疆煤层气勘探开发迈向新阶段[J]. 非常规油气,2023,10(6):1-7. DU Shitao,AN Qing,CHANG Zhitai,et al. The exploration and development of coalbed methane in Xinjiang are entering a new stage[J]. Unconventional Oil & Gas,2023,10(6):1-7.
[6] 郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探,2021,26(6):38-49. GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(6):38-49.
[7] 朱志良,高小明. 陇东煤田侏罗系煤岩气成藏主控因素与模式[J]. 岩性油气藏,2022,34(1):86-94. ZHU Zhiliang,GAO Xiaoming. Main controlling factors and models of Jurassic coalbed methane accumulation in Longdong coal field[J]. Lithologic Reservoirs,2022,34(1):86-94.
[8] 侯海海,李强强,梁国栋,等. 准噶尔盆地南缘西山窑组与八道湾组煤层气成藏富集条件对比研究[J]. 非常规油气, 2022,9(1):18-24. HOU Haihai,LI Qiangqiang,LIANG Guodong,et al. Compara tive study of CBM accumulation conditions between the Xishan yao Formation and the Badaowan Formation in the southern Junggar Bain[J]. Unconventional Oil & Gas,2022,9(1):18-24.
[9] 王圣柱,王千军,张关龙,等. 准噶尔盆地石炭系烃源岩发育模式及地球化学特征[J]. 油气地质与采收率,2020,27(4): 13-25. WANG Shengzhu,WANG Qianjun,ZHANG Guanlong,et al. Development mode and geochemical characteristics of Carbon iferous source rocks in Junggar Basin[J]. Petroleum Geology and Recovery Efficiency,2020,27(4):13-25.
[10] 尹海洋,陈同俊,宋雄,等. 基于地震属性优化和机器学习的煤层厚度预测方法[J]. 煤田地质与勘探,2023,51(5):164-170. YIN Haiyang,CHEN Tongjun,SONG Xiong,et al. Methods for predicting the thickness of coal seams based on seismic at tribute optimization and machine learning[J]. Coal Geology & Exploration,2023,51(5):164-170.
[11] 张晨林. 约束稀疏脉冲反演在煤层厚度预测中的应用[J]. 中国煤炭地质,2022,34(9):68-81. ZHANG Chenlin. Application of constrained sparse pulse inver sion in coal thickness prediction[J]. Coal Geology of China, 2022,34(9):68-81.
[12] 单蕊. 地震多属性分析技术在煤层厚度预测中的应用分析[J]. 物探化探计算技术,2021,43(3):304-310. SHAN Rui. Application of seismic multi-attribute analysis tech nique in coal seam thickness predication[J]. Computing Tech niques for Geophysical and Geochemical Exploration,2021,43(3):304-310.
[13] 成润根. 基于高分辨率地质统计学反演技术预测煤层厚度应用研究[J]. 中国煤炭地质,2020,32(增刊1):131-134. CHENG Rungen. Applied research on coal thickness prediction based on high resolution geostatistical inversion[J]. Coal Geology of China,2020,32(Suppl 1):131-134.
[14] 邱杰,符文,孟祥迪,等. AVO技术在煤层气勘探中的应用[J]. 中国煤炭地质,2013,25(33):55-62. QIU Jie,FU Wen,MENG Xiangdi,et al. Application of AVO technique in CBM prospecting[J]. Coal Geology of China, 2013,25(33):55-62.
[15] 陈跃,王丽雅,李国富,等. 基于随机森林算法的低煤阶煤层气开发选区预测[J]. 油气藏评价与开发,2022,12(4):596-603. CHEN Yue,WANG Liya,LI Guofu,et al. Prediction of favorable areas for low-rank coalbed methane based on Random Forest algorithm[J]. Petroleum Reservoir Evaluation and Develop ment,2022,12(4):596-603.
[16] 陈永波,张虎权,张寒,等. 基于OVT域偏移数据的云质岩储层预测技术及应用:以玛湖凹陷乌夏地区风三段为例[J]. 岩性油气藏,2021,33(6):145-155. CHEN Yongbo,ZHANG Huquan,ZHANG Han,et al. Dolo mitic reservoir prediction technology based on OVT domain migration data and its application:A case study of Feng 3 mem ber in Wuxia area,Mahu Sag[J]. Lithologic Reservoirs,2021, 33(6):145-155.
[17] 吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发,2020,10(4):1-11. WU Yuyuan,CHEN Zhenlong. Challenges and countermea sures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development,2020,10(4):1-11.
[18] 靳军,付欢,于景维,等. 准噶尔盆地白家海凸起下侏罗统三工河组沉积演化及油气勘探意义[J]. 中国石油勘探,2018, 23(1):81-90. JIN Jun,FU Huan,YU Jingwei,et al. Sedimentary evolution of the Lower Jurassic Sangonghe Formation in Baijiahai uplift, Junggar Basin and its significance in oil and gas exploration [J]. China Petroleum Exploration,2018,23(1):81-90.
[19] 程亮,王振奇,陈勇,等. 准噶尔盆地白家海凸起侏罗系油气成藏模式与勘探方向[J]. 科学技术与工程,2015,15(25): 115-134. CHENG Liang,WANG Zhenqi,CHEN Yong,et al. Reservoir forming model and exploration direction of Jurassic petroleum, Baijiahai Swell,Junggar Basin[J]. Science Technology and En gineering,2015,15(25):115-134.
[20] 汤磊鑫,周虎,殷磊磊. 淮北地区含煤岩系有机地球化学特征及生烃潜力分析[J]. 非常规油气,2022,9(6):51-60. TANG Leixin,ZHOU Hu,YIN Leilei. Analysis on organic geo chemistry characteristics and hydrocarbon-generating potential of coal-bearing strata in Huaibei Area[J]. Unconventional Oil & Gas,2022,9(6):51-60.
[21] 胡海燕,吴坚,黄芸,等. 白家海凸起油气成藏机理及其主控因素[J]. 新疆石油地质,2013,34(2):137-139. HU Haiyan,WU Jian,HUANG Yun,et al. Petroleum accumula tion mechanism and controlling factors in Baijiahai Swell, Junggar Basin[J]. Xinjiang Petroleum Geology,2013,34(2): 137-139.
[22] 韩永胜,王峰,宋煜,等. 筠连煤层气储层特征与含气量主控因素分析[J]. 非常规油气,2021,8(6):7-13. HAN Yongsheng,WANG Feng,SONG Yu,et al. Analysis of Junlian coalbed methane reservoir characteristics and main con trolling factors of gas content[J]. Unconventional Oil & Gas, 2021,8(6):7-13.
[23] 马昭军,胡治权,张剑飞. 基于谐波分解恢复弱信号的高分辨率处理技术[J]. 新疆石油地质,2024,45(2):235-243. MA Zhaojun,HU Zhiquan,ZHANG Jianfei. High-resolution processing technology for restoring weak signals based on har monic decomposition[J]. Xinjiang Petroleum Geology,2024, 45(2):235-243.
[24] 苏勤,曾华会,徐兴荣,等. 沙漠区地震数据高分辨率处理关键方法及其在尼日尔Agedem地区的应用[J]. 岩性油气藏, 2023,35(6):18-28. SU Qin,ZENG Huahui,XU Xingrong,et al. Key techniques of high-resolution processing of desert seismic data and its appli cation in Agedem area,Niger[J]. Lithologic Reservoirs,2023, 35(6):18-28.
[25] 侯艳,柯沛,宁宏晓,等. 沁水盆地煤层气地震资料处理技术[J]. 非常规油气,2024,11(2):9-20. HOU Yan,KE Pei,NING Hongxiao,et al. CBM seismic data processing technology in Qinshui Basin[J]. Unconventional Oil & Gas,2024,11(2):9-20.
[26] 刘化清,刘宗堡,吴孔友,等. 岩性地层油气藏区带及圈闭评价技术研究新进展[J]. 岩性油气藏,2021,33(1):25-36. LIU Huaqing,LIU Zongbao,WU Kongyou,et al. New progress in study of play and trap evaluation technology for lithostrati graphic reservoirs [J]. Lithologic Reservoirs,2021,33(1):25-36.
[27] 张军华,常健强,王作乾,等. 90°相移薄互层解释技术理论诠释与实际应用[J]. 吉林大学学报(地球科学版),2022,52(4):1348-1359. ZHANG Junhua,CHANG Jianqiang,WANG Zuoqian,et al. Theoretical annotation and application of 90° phase-shifting thin interbed interpretation technique[J]. Journal of Jilin Uni versity(Earth Science Edition),2022,52(4):1348-1359.
[28] 赵长永,陈希光,李俊飞,等. 基于三维地震数据的短期旋回内薄层砂体的预测[J]. 特种油气藏,2023,30(6):40-47. ZHAO Changyong,CHEN Xiguang,LI Junfei,et al. Applica tion in the prediction of thin sand body within short-term se quence cycle based on 3D seismic data[J]. Special Oil & Gas Reservoirs,2023,30(6):40-47.
[29] 刘化清,苏明军,倪长宽,等. 薄砂体预测的地震沉积学研究方法[J]. 岩性油气藏,2018,30(2):1-11. LIU Huaqing,SUN Mingjun,NI Changkuan,et al. Thin bed prediction from interbeded background:Revised seismic sedi mentological method[J]. Lithologic Reservoirs,2018,30(2): 1-11.
[30] 于建国,韩文功,刘力辉. 分频反演方法及应用[J]. 石油地球物理勘探,2006,41(2):193-197. YU Jianguo,HAN Wengong,LIU Lihui. Frequency-divided in version and application[J]. Oil Geophysical Prospecting,2006, 41(2):193-197.
[31] 张卫卫,刘军,刘力辉,等. 珠江口盆地番禺4 洼古近系文昌组岩性预测技术及应用[J]. 岩性油气藏,2022,34(6):118-125. ZHANG Weiwei,LIU Jun,LIU Lihui,et al. Lithology predic tion technology and its application of Paleogene Wenchang For mation in Panyu 4 depression,Pearl River Mouth Basin[J]. Lithologic Reservoirs,2022,34(6):118-125.
[32] LI Wei,YUE Dali,WU Shenghe,et al. Characterizing meander belts and point bars in fluvial reservoirs by combining spectral decomposition and genetic inversion[J]. Marine and Petroleum Geology,2019,105:168-184.
[33] 淮银超,张铭,谭玉涵,等. 澳大利亚东部S区块煤层气储层特征及有利区预测[J]. 岩性油气藏,2019,31(1):49-56. HUAI Yinchao,ZHANG Ming,TAN Yuhan,et al. Reservoir characteristics and favorable areas prediction of coal bed meth ane in S block,eastern Australia[J]. Lithologic Reservoirs, 2019,31(1):49-56.
[34] 李洪辉,岳大力,李伟,等. 基于分频智能反演的曲流河点坝与废弃河道识别[J]. 石油地球物理勘探,2023,58(2):358-368. LI Honghui,YUE Dali,LI Wei,et al. Identification of point bar and abandoned channel of meandering river by spectral decom position inversion based on machine learning[J]. Oil Geophysi cal Prospecting,2023,58(2):358-368.
[35] VAPNIK V,LEVIN E,CUN Y. Measuring the VC-dimension of a learning machine[J]. Neural Computation,1994,6(5): 851-876.
[36] 苏建龙,米鸿,王彦春,等. 基于支持向量机的非线性弹性阻抗反演方法[J]. 石油地球物理勘探,2014,49(4):751-758. SU Jianlong,MI Hong,WANG Yanchun,et al. Nonlinear elas tic impedance inversion method supported by vector machines [J]. Oil Geophysical Prospecting,2014,49(4):751-758.
[37] 张彦周,刘叶玲,谢宝英. 支持向量机在储层厚度预测中的应用[J]. 勘探地球物理进展,2005,28(6):422-424. ZHANG Yanzhou,LIU Yeling,XIE Baoying. Application of SVM in prediction of reservoir thickness[J]. Progress in Explo ration Geophysics,2005,28(6):422-424.
[38] 陈棡,卞保力,李啸,等. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏,2021,33(1):46-56. CHEN Gang,BIAN Baoli,LI Xiao,et al. Transport system and its control on reservoir formation of Jurassic-Cretaceous reser voirs in hinterland of Junggar Basin[J]. Lithologic Reservoirs, 2021,33(1):46-56.
[39] 丁燕,杜启振,YASIN Q,等. 基于深度学习的裂缝预测在S区潜山碳酸盐岩储层中的应用[J]. 石油物探,2020,59(2): 267-275. DING Yan,DU Qizhen,YASIN Q,et al. Fracture prediction based on deep learning application to a buried hill carbonate reservoir in the S area[J]. Geophysical Prospecting for Petro leum,2020,59(2):267-275.
[40] 赵邦六,雍学善,高建虎,等. 中国石油智能地震处理解释技术进展与发展方向思考[J]. 中国石油勘探,2021,26(5):12-23. ZHAO Bangliu,YONG Xueshan,GAO Jianhu,et al. Progress and development direction of PetroChina intelligent seismic processing and interpretation technology[J]. China Petroleum Exploration,2021,26(5):12-23.
[41] 刘红星,陈海清,陈斌,等. AVO技术在鄂东缘煤系致密气预测中的适用性分析[J]. 石油地球物理勘探,2023,57(增刊2):92-99. LIU Hongxing,CHEN Haiqing,CHEN Bin,et al. Analysis of application of AVO technique in prediction of Coal-measure tight gas in easter margin of Erdos Basin[J]. Oil Geophysical Prospecting,2023,57(Suppl 2):92-99.
[42] 张鹏豹,李凡异,杨童,等. AVO技术在二连盆地吉尔嘎朗图凹陷低煤阶煤层气预测中的应用[J]. 大庆石油地质与开发, 2021,40(1):129-136. ZHANG Pengbao,LI Fanyi,YANG Tong,et al. Application of AVO technique in the prediction of low-rank CBM in Jier galangtu sag of Erlian Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(1):129-136.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[3] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[4] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[5] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[6] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[7] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[8] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[9] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[10] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[11] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[12] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[13] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[14] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[15] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[5] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[6] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[7] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[8] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[9] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[10] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .