岩性油气藏 ›› 2014, Vol. 26 ›› Issue (4): 73–80.doi: 10.3969/j.issn.1673-8926.2014.04.011

• 油气地质 • 上一篇    下一篇

深层有效碎屑岩储层形成机理研究进展

潘荣,朱筱敏,王星星,张剑锋   

  1. 中国石油大学(北京) 地球科学学院,北京 102249
  • 出版日期:2014-08-15 发布日期:2014-08-15
  • 第一作者:潘荣(1985-),女,中国石油大学(北京)在读博士研究生,研究方向为储层地质学。 地址:(102249)北京市昌平区府学路 18 号中国石油大学地球科学学院。 E-mail:rongfenxiang@163.com。
  • 基金资助:

    国家重点基础研究发展计划(973)项目“中国西部叠合盆地深部油气复合成藏机制与富集规律”(编号:2011CB201104)和国家重 大科技专项“岩性地层油气藏沉积体系、储层形成机理与分布研究”( 编号:2011ZX05001-002)联合资助

Advancement on formation mechanism of deep effective clastic reservoir

PAN Rong, ZHU Xiaomin,WANG Xingxing, ZHANG Jianfeng
  

  1. College of Geosciences, China University of Petroleum, Beijing 102249, China
  • Online:2014-08-15 Published:2014-08-15

摘要:

深层碎屑岩储层逐渐成为油气勘探的新领域,而有效碎屑岩储层的形成机理又是深层领域油气勘探的焦点。 深层有效碎屑岩储层的形成机理复杂,与沉积作用、成岩作用及构造作用息息相关。沉积环境是形成有效储层的前提和基础。 建设性成岩作用形成的次生孔隙能有效改善储层物性。 较低的古地温环境、快速深埋的埋藏方式、地层中发育异常高压、上覆厚层膏盐、烃类早期充注、颗粒黏土矿物包壳和深层流体活动等条件均有利于有效碎屑岩储层的形成。在深层储层演化过程中,构造应力作用可直接导致孔隙体积缩小,但构造应力形成的裂缝可改善储层孔隙沟通及渗流能力,形成裂缝型有效储层。 因此,深层有效碎屑岩储层形成机理可总结归纳为“沉积物质为基础,成岩演化为关键,构造作用为调整”。 通过现代技术手段对储层物质组成的研究与成岩模拟实验研究及创新利用不同学科交叉渗透的新理论和新方法,是深层有效碎屑岩储层形成机理研究的主要发展趋势。

关键词: 沉积相, 非常规储集体, 有利区预测, 下侏罗统, 自流井组, 大安寨段, 涪陵示范区

Abstract:

As petroleum exploration goes into a more and more mature stage, deep clastic reservoir is becoming an important new area for exploration in the oil-gas basins. The research of deep petroleum exploration is focusing on the mechanism of the clastic reservoir evolution. The formation mechanism of the deep effective clastic reservoir is complex and closely connected to the sedimentation, diagenesis and tectonism. Sedimentary environment is the prerequisite and foundation for forming effective reservoir. Secondary pore produced by the main constructive digenesis vastly improves reservoir physical properties. Depositional environment and diagenetic conditions that can prevent or slow down diagenesis effectively is conductive to the reservoir physical properties, including low geotemperature, rapid burial history, abnormal pressure, gypsum-salt bed effect, hydrocarbon inject, grain coats and fluid activity, etc. During the evolution of deep reservoirs, tectonic compaction reduces the pore volume, while the structural fractures improve the seepage ability of the reservoir porosity, forming effective fractured reservoir. Thus, the reservoir forming mechanism was suggested with the deposition, dissolution and tectonism being fundamental, key and occasion respectively. Through using modern technology, conducting the diagenesis modeling experiments and using new methods with the inter-discipline knowledge, have already become the main development trends of the research of the forming mechanism of the deep effective clastic reservoir.

Key words:  sedimentary facies, unconventional reservoirs, favorable areas prediction, Lower Jurassic, Ziliujing Formation, Da’anzhai member, Fuling demonstration area

[1] 石昕,戴金星,赵文智.深层油气藏勘探前景分析[J].中国石油勘探,2005,10(1):1-10.
[2] 康竹林.渤海湾盆地深层油气勘探前景[J].石油勘探与开发,1996,23(6):20-22.
[3] MΦrk M B E,Moen K. Compaction microstructures in quartz grainsand quartz cement in deeply buried reservoir sandstones using combined petrography and EBSD analysis[J]. Journal of Structural Geology,2007,29(11):1843-1854.
[4] 于兴河,李胜利.碎屑岩系油气储层沉积学的发展历程与热点问题思考[J].沉积学报,2009,27(5):880-895.
[5] Schmidt V,McDonald D A. The role of secondary porosity in the course of sandstone diagenesis [C]∥Scholle P A,Schluger P R.Aspects of Diagenesis. Tulsa:SEPM Special Publication,1979,26:175-207.
[6] Surdam R C,Boese S W,Crossey L J. The chemistry of secondary porosity:Part 2. Aspects of porosity modification subject group:Reservoirs-sandstones[G]. AAPG Memoir 37,1984:127-149.
[7] Surdam R C,Crossey L J,Hagen E S,et al. Organic inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin,1989,73(1):1-23.
[8] 钟大康,朱筱敏,王红军.中国深层优质碎屑岩储层特征与形成机理分析[J].中国科学D 辑:地球科学,2008,38(增刊1):11-18.
[9] Ajdukiewicz J M,Lander R H. Sandstone reservoir quality prediction:The state of the art[J]. AAPG Bulletin,2010,94(8):1083-1091.
[10] Ajdukiewicz J M,Nicholson P H,Esch W L. Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation,Gulf of Mexico[J]. AAPG Bulletin,2010,94(8):1189-1227.
[11] Taylor T R,Giles M R,Hathon L A,et al. Sandstone diagenesis and reservoir quality prediction:Models,myths,and reality [J].AAPG Bulletin,2010,94(8):1093-1132.
[12] Morad S,Al-Ramadan K,Ketzer J M,et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs:A review of the role of depositional facies and sequence stratigraphy[J]. AAPG Bulletin,2010,94(8):1267-1309.
[13] Bjorlykke K. Relationships between depositional environments,burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins [J]. Sedimentary Geology,2014,301:1-14.
[14] ZOU Caineng,TAO Shizhen,ZHANG Xiangxiang,et al. Geologic characteristics,controlling factors and hydrocarbon accumulation mechanisms of China’s Large Gas Provinces of low porosity and permeability[J]. Science in China(Series D:Earth Sciences),2009,52(8):1068-1090.
[15] Chuhan F A,Kjeldstad A,Bjorlykke K,et al. Porosity loss in sand by grain crushing-Experimental evidence and relevance to reservoir quality[J]. Marine and Petroleum Geology,2002,19:39-53.
[16] Chuhan F A,Kjeldstad A,Bjorlykke K,et al. Experimental compression of loose sands:Relevance to porosity reduction during burial in sedimentary basins[J]. Canadian Geotechnical Journal,2003,40(5):995-1011.
[17] Fawad M,Mondol N H,Jahren J,et al. Microfabric and rock properties of experimentally compressed silt-clay mixtures[J]. Marine and Petroleum Geology,2010,27(8):1698-1712.
[18] Fawad M,Mondol N H,Jahren J,et al. Seismic velocities from experimental compaction:New porosity and velocity-depth relations for sand with different textural and mineralogical compositions [C]. SEG International Exposition and 80th Annual meeting,Denver. Tulsa,Society of Exploration Geophysicists,2010:2480-2485.
[19] Fawad M,Mondol N H,Jahren J,et al. Mechanical compaction and ultrasonic velocity of sands with different texture and mineralogical composition[J]. Geophysical Prospecting,2011,59:697-720.
[20] Chuhan F A,Bjorlykke K,Lowrey C J. Closed-system burial diagenesis in reservoir sandstones:Examples from the Garn Formation at Haltenbanken area,offshore mid-Norway[J]. Journal of Sedimentary Research,2001,71(1):15-26.
[21] Marcussen O,Maast T E,Mondol N H,et al. Changes in physical properties of a reservoir sandstone as a function of burial depth—the Etive Formation,Northern North Sea[J]. Marine and Petroleum Geology,2010,27(8):1725-1735.
[22] Marcussen O,Faleide J I,Jahren J,et al. Mudstone compaction curves in basin modelling:A study of Mesozoic and Cenozoic Sediments in the northern North Sea [J]. Basin Research,2010,22:324-340.
[23] 黄洁,朱如凯,侯读杰,等.沉积环境和层序地层对次生孔隙发育的影响———以川中地区须家河组碎屑岩储集层为例[J].石油勘探与开发,2010,37(2):158-166.
[24] Rittenhouse G. Mechanical compaction of sands containing different percentages of ductile grains:A theoretical approach [J]. AAPG Bulletin,1971,55(1):92-96.
[25] Souza R S De,Ros L F,Morad S. Dolomite diagenesis and porosity preservation in lithic reseroirs:Carmopolis member,Sergipe-Alagoas basin,northeastern Brazil[J]. AAPG Bulletin,1995,79(5):725-747.
[26] Ketzer J M,Morad S,Evans R,et al. Distribution of diagenetic alterations in fluvial,deltaic,and shallow marine sandstones within a sequence stratigraphic framework:Evidence from the Mullaghmore Formation (Carboniferous),NW Ireland[J]. Journal of Sedimentary Research,2002,72(6):760-774.
[27] 寿建峰.碎屑岩储层控制因素及钻前定量地质预测[J].海相油气地质,1999,4(1):20-24.
[28] 赵文智,张光亚,王红军.石油地质理论新进展及其在拓展勘探领域中的意义[J].石油学报,2005,26(1):1-7.
[29] 曾联波,漆家福,王成刚,等.构造应力对裂缝形成与流体流动的影响[J].地学前缘,2008,15(3):292-298.
[30] Osborne M J,Swarbrick R E. Diagenesis in North Sea HPHT clastic reservoirs-consequences for porosity and overpressure prediction[J]. Marine and Petroleum Geology,1999,16(4):337-353.
[31] Bloch S,Lander R H,Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability[J]. AAPG Bulletin,2002,86(2):301-328.
[32] du Rouchet J. Stress field,a key to oil migration[J]. AAPG Bulletin,1981,65(1):74-85.
[33] Wilkinson M,Darby D,Haszeldine R S,et al. Secondary porosity generation during deep burial associated with overpressure leakoff:Fulmar formation,United Kingdom Central Graben[J]. AAPG Bulletin,1997,81(5):803-813.
[34] 王占国.异常高压对储层物性的影响[J].油气地质与采收率,2005,12(6):31-33.
[35] 李明诚,李剑.“动力圈闭”———低渗透致密储层中油气充注成藏的主要作用[J]. 石油学报,2010,31(5):718-722.
[36] 寿建峰,朱国华. 砂岩储层孔隙保存的定量预测研究[J]. 地质科学,1998,33(2):244-250.
[37] 李会军,吴泰然,吴波,等.中国优质碎屑岩深层储层控制因素综述[J].地质科技情报,2004,23(4):76-82.
[38] 王良书,李成,刘绍文,等.塔里木盆地北缘库车前陆盆地地温梯度分布特征[J].地球物理学报,2003,46(3):403-407.
[39] 孟元林,胡安文,乔德武,等.松辽盆地徐家围子断陷深层区域成岩规律和成岩作用对致密储层含气性的控制[J].地质学报,2012,86(2):325-334.
[40] Aplin A C,Warren E A. Oxygen isotopic indications of the mechanisms of silica transport and quartz cementation in deeply burial sandstones[J].Geology,1994,22(9):847-850.
[41] 纪友亮,赵澄林,刘孟慧.东濮凹陷地层流体的热循环对流与成岩圈闭的形成[J].石油实验地质,1995,17(1):8-16.
[42] 贾颖,李培军,付鑫,等.潜江凹陷潜江组膏盐层特征及其对地层压力的影响[J].地质科技情报,2011,30(3):50-54.
[43] Mello U T,Karner G D,Anderson R N. Role of salt in restraining the maturation of subsalt source rocks [J]. Marine and Petroleum Geology,1995,12(7):697-716.
[44] Walderhaug O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs[J]. AAPG Bulletin,1996,80(5):731-745.
[45] Stover S C,Ge S,Weimer P,et al. The effects of salt evolution,structural development,and fault propagation on Late Mesozoic-Cenozoic oil migration:A two-dimensional fluid-flow study along a megaregional profile in the northern Gulf of Mexico Basin[J]. AAPG Bulletin,2001,85(11):1945-1966.
[46] 万桂梅,汤良杰,金文正,等.膏盐层在库车秋里塔格构造带构造变形及成藏中的作用[J].地质科学,2007,42(4):666-677.
[47] Giles M R,Stevenson S,Martin S V,et al. The reservoir properties and diagenesis of the Brent Group:A regional perspective [C]∥Morton A C,Haszeldine R S,Giles M R,et al. Geology of the Brent Group. London:Special Publication of the Geological Society,1992,61:289-327.
[48] Neilson J E,Oxtoby N H,Simmons M D,et al. The relationship between petroleum emplacement and carbonate reservoir quality:Examples from Abu Dhabi and the Amu Darya Basin [J]. Marine and Petroleum Geology,1998,15(1):57-72.
[49] 王琪,史基安,肖立新,等.石油侵位对碎屑储集岩成岩序列的影响及其与孔隙演化的关系———以塔西南坳陷石炭系石英砂岩为例[J].沉积学报,1998,16(3):97-101.
[50] Nicolaas M,Jolanta C,Saulius S,et al. Lack of inhibiting effect of oil emplacement on quartz cementation:Evidence from Cambrian reservoir sandstones,Paleozoic Baltic Basin[J]. GSA Bulletin,2008,120(9-10):1280-1295.
[51] 胡海燕.油气充注对成岩作用的影响[J].海相油气地质,2004,9(1/2):85-89.
[52] Ehrenberg S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:example from the Norwegian continental shelf [J]. AAPG Bulletin,1993,77 (7):1260- 1286.
[53] Berger A,Gier S,Krois P. Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones:Evidence from Cretaceous sandstones of the Sawan gas field,Pakistan [J]. AAPG Bulletin,2009,93(5):595-615.
[54] Grigsby J D. Origin and growth mechanism of authigenic chlorite in sandstones of the lower Vicksburg Formation,south Texas [J].Journal of Sedimentary Research,2001,71(1):27-36.
[55] 周东升,刘光祥,叶军,等.深部砂岩异常孔隙的保存机制研究[J].石油实验地质,2004,26(1):40-46.
[56] 钟大康,朱筱敏,张琴.不同埋深条件下砂泥岩互层中砂岩储层物性变化规律[J].地质学报,2004,78(6):863-871.
[57] 丁晓琪,张哨楠.镇泾地区延长组碎屑岩古风化壳研究[J].西南石油大学学报:自然科学版,2010,32(4):16-19.
[58] 胡海燕.深部油气成藏机理概论[J].大庆石油地质与开发,2006,25(6):24-26.
[59] Bethke C M. Inverse hydrologic analysis of the distribution and origin of Gulf Coast-type geopressured zones [J]. Journal of Geophysical Research,1986,91(B6):6535-6545.
[1] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[2] 何文渊, 陈可洋. 哈萨克斯坦南图尔盖盆地Doshan斜坡带岩性油气藏储层预测方法[J]. 岩性油气藏, 2024, 36(4): 1-11.
[3] 邹连松, 徐文礼, 梁西文, 刘皓天, 周坤, 霍飞, 周林, 文华国. 川东地区下侏罗统自流井组东岳庙段泥页岩沉积特征及物质来源[J]. 岩性油气藏, 2024, 36(4): 122-135.
[4] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[5] 魏嘉怡, 王红伟, 刘刚, 李涵, 曹茜. 鄂尔多斯盆地西缘冲断带石炭系羊虎沟组沉积特征[J]. 岩性油气藏, 2023, 35(5): 120-130.
[6] 付文俊, 张昌民, 冀东升, 娄林, 刘家乐, 王绪龙. 准噶尔盆地南安集海河剖面中侏罗统头屯河组浅水三角洲沉积特征[J]. 岩性油气藏, 2023, 35(4): 145-160.
[7] 谢瑞, 张尚锋, 周林, 刘皓天, 姚明君, 蒋雪桂. 川东地区侏罗系自流井组大安寨段致密储层油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 108-119.
[8] 康家豪, 王兴志, 谢圣阳, 曾德铭, 杜垚, 张芮, 张少敏, 李阳. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4): 53-65.
[9] 张俊龙, 何幼斌, 梁建设, 邱春光, 吴东胜, 李华, 童乐. 东非海岸盆地下侏罗统沉积特征及其控源作用[J]. 岩性油气藏, 2022, 34(4): 128-140.
[10] 任婕, 胡忠贵, 胡明毅, 李雄, 庞艳荣, 左洺滔, 黄宇飞. 涪陵地区下三叠统飞仙关组沉积相特征及有利储集体分布[J]. 岩性油气藏, 2021, 33(6): 70-80.
[11] 郑荣臣, 李宏涛, 史云清, 肖开华. 川东北元坝地区三叠系须三段沉积特征及成岩作用[J]. 岩性油气藏, 2021, 33(3): 13-26.
[12] 何绪全, 黄东, 赵艾琳, 李育聪. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏, 2021, 33(3): 129-137.
[13] 张闻亭, 龙礼文, 肖文华, 魏浩元, 李铁锋, 董震宇. 酒泉盆地青西凹陷窟窿山构造带下沟组沉积特征及储层预测[J]. 岩性油气藏, 2021, 33(1): 186-197.
[14] 彭军, 褚江天, 陈友莲, 文舰, 李亚丁, 邓思思. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征[J]. 岩性油气藏, 2020, 32(4): 12-22.
[15] 庞小军, 王清斌, 解婷, 赵梦, 冯冲. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏, 2020, 32(2): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .