Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (5): 81-94.doi: 10.12108/yxyqc.20210508

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area,Tarim Basin

WANG Suying1, ZHANG Xiang1,2, TIAN Jingchun1,2, PENG Minghong1, ZHENG Xiaoyu1, XIA Yongtao3   

  1. 1. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    3. Research Institute of Exploration and Development, Sinopec Northwest Oilfield Company, Urumqi 830011, China
  • Received:2020-12-14 Revised:2021-04-08 Online:2021-10-01 Published:2021-09-30

Abstract: In order to study the significant differences of sedimentary patterns in different stages in tidal flat-shelf sedimentary system of Kepingtage Formation in Shunbei area of Tarim Basin, by using common section identification, core observation and description, the data of seismic, well logging and single well, a comprehensive analysis was carried out on the basis of the division and comparison of lithologic sections. The results show that:(1) The Kepingtage Formation in Shunbei area is controlled by palaeo-uplift, and there are two types of stratigraphic structures: "three-section" (lower sandstone interval, mudstone interval and sandstone interval are all developed) and "one-section" (lack of lower sandstone interval, mudstone interval or middle and lower part of mudstone interval).(2) Tidal flat-shelf depositional system controlled by palaeo-uplift in the background of transgression is developed in Kepingtage Formation in Shunbei area. The depositional pattern is significantly different in the early and late depositional periods. In the early stage, it was controlled by palaeo-uplift, and the sedimentary facies zones were differentiated in the east-west direction and distributed in a ring along the palaeo-uplift. In the late stage, the paleo-uplift was submerged and no longer controlled the distribution of sedimentary facies zones. Due to the influence of basin boundary, the sedimentary pattern evolved from east-west differentiation to north-south differentiation. The sedimentary facies zones extended from east-west to north-south as a whole, and distributed symmetrically along the continental shelf sedimentary area.(3) Kepingtage Formation has experienced the water by the "shallow-deep, shallow and deep-shallow" evolution of sea-level change, several sets of reservoir-cap assemblages are developed vertically, and subtidal sand flat and tidal-subtidal tidal channel are favorable reservoir sand bodies. The research results can provide favorable target area and exploration direction for oil and gas exploration of marine clastic rocks.

Key words: sedimentary evolution, sedimentary differentiation model, lithologic trap, Silurian, Kepingtage Formation, Tarim Basin

CLC Number: 

  • TE122.1
[1] 朱如凯, 罗平, 何东博, 等.塔里木盆地塔中地区志留系柯坪塔格组沉积相与沉积模式.古地理学报, 2005, 7(2):197-206. ZHU R K, LUO P, HE D B, et al. Sedimentary facies and models of the Kepingtage Formation of Silurian in Tazhong area, Tarim Basin. Journal of Palaeogeography, 2005, 7(2):197-206.
[2] 陈强路, 范明, 尤东华.塔里木盆地志留系沥青砂岩储集性非常规评价.石油学报, 2006, 27(1):30-33. CHEN Q L, FAN M, YOU D H. Non-traditional method for evaluating physical property of Silurian bitumen sandstone reservoirs in Tarim Basin. Acta Petrolei Sinica, 2006, 27(1):30-33.
[3] 尚凯, 郭娜, 张睿.塔里木盆地S1井区志留系柯坪塔格组下沥青砂岩段沉积相新认识.沉积与特提斯地质, 2016, 36(4):14-20. SHANG K, GUO N, ZHANG R. Sedimentary facies of the lower bitumen-bearing sandstone member of the Silurian Kepingtage Formation in the S1 well area, Tarim Basin. Sedimentary Geology and Tethyan Geology, 2016, 36(4):14-20.
[4] 张翔.塔里木盆地志留系层序地层学研究及意义.成都:成都理工大学, 2009. ZHANG X. Studying and significance of sequence stratigraphy of Silurian in the Tarim Basin. Chengdu:Chengdu University of Technology, 2009.
[5] 孙乃泉, 云露, 蒲仁海, 等.塔里木盆地顺9井区柯坪塔格组下段沉积微相与储层展布. 吉林大学学报(地球科学版), 2013, 43(6):1716-1725. SUN N Q, YUN L, PU R H, et al. The microfacies and reservoir distribution of the lower member of Kepingtage Formation in Shun 9 well area in Tarim Basin. Journal of Jilin University (Earth Science Edition), 2013, 43(6):1716-1725.
[6] 张雄, 王晓之, 郭天魁, 等.顺北油田缝内转向压裂暂堵剂评价实验.岩性油气藏, 2020, 32(5):170-176. ZHANG X, WANG X Z, GUO T K, et al. Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield. Lithologic Reservoirs, 2020, 32(5):170-176.
[7] 王建新.塔里木盆地志留系柯坪塔格组潮坪沉积特征分析. 西北地质, 2018, 51(2):69-74. WANG J X. Tidal flat sedimentary characteristics of Silurian Kepingtage Formation in Tarim Basin. Northwestern Geology, 2018, 51(2):69-74.
[8] 曾庆鲁, 王力宝, 王朝锋, 等.塔中地区志留系柯坪塔格组上3亚段沉积体系类型及分布规律. 中国石油勘探, 2019, 24(1):95-104. ZENG Q L, WANG L B, WANG C F, et al. Sedimentary system types and distribution of the 3rd upper sub-member of Silurian Kepingtage Formation in Tazhong area, Tarim Basin. China Petroleum Exploration, 2019, 24(1):95-104.
[9] 刘群利, 杜伟维.塔河油田TP16-1井区志留系柯坪塔格组下段沉积相研究.西部探矿工程, 2014, 26(9):29-31. LIU Q L, DU W W. Sedimentary facies of the lower member of Silurian Kepingtage formation in TP16-1 well area, Tahe Oilfield. West-China Exploration Engineering, 2014, 26(9):29-31.
[10] 尚凯, 夏永涛, 马中远, 等.塔中北斜坡柯坪塔格组沉积相分析.新疆地质, 2013, 31(增刊1):40-43. SHANG K, XIA Y T, MA Z Y, et al. Analysis on sedimentary facies of Kepingtage Formation of Silurian in the northern slope of Tazhong area. Xinjiang Geology, 2013, 31(Suppl 1):40-43.
[11] 尚静.塔北地区志留系柯坪塔格组沉积体系分析.武汉:长江大学, 2018. SHANG J. Analysis of depositional system of Silurian Kepingtage Formation in northern Tarim Basin. Wuhan:Yangtze University, 2018.
[12] 孙佳珺, 辛仁臣.塔北南坡志留系柯坪塔格组下段底部砂岩亚段沉积体系分析.新疆地质, 2016, 34(2):240-244. SUN J J, XIN R C. Analysis of depositional system of bottom sandstone sub-member in lower member of Kepingtage Formation, Silurian in southern slope of Tabei uplift. Xinjiang Geology, 2016, 34(2):240-244.
[13] 张少华, 蒲仁海, 云露, 等.塔北地区柯坪塔格组下段储层特征.岩性油气藏, 2012, 24(6):76-81. ZHANG S H, PU R H, YUN L, et al. Reservoir characteristics of lower Kepingtage Formation in Tabei area. Lithologic Reservoirs, 2012, 24(6):76-81.
[14] 苏炳睿.塔里木盆地中央隆起带志留系柯坪塔格组层序地层格架内砂体时空分布规律研究.成都:成都理工大学, 2015. SU B R. The study of sequence stratigraphic framework of the space-time distribution of sand of Kepingtage Formation Silurian of Tarim Basin. Chengdu:Chengdu University of Technology, 2015.
[15] 郝雷, 傅恒, 钱程, 等.塔里木盆地志留系柯坪塔格组沉积相特征.石油化工应用, 2015, 34(4):74-78. HAO L, FU H, QIAN C, et al. Depositional features of Kepingtage Formation of Silurianin in Tarim Basin. Petrochemical Industry Application, 2015, 34(4):74-78.
[16] 陶碧娥, 傅恒.塔河地区志留系沉积体系及储层纵向分布特征.岩性油气藏, 2009, 21(1):40-45. TAO B E, FU H. Vertical distribution characteristics of reservoir and sedimentary system of Silurian in Tahe area. Lithologic Reservoirs, 2009, 21(1):40-45.
[17] 马晓娟, 张忠民, 陈占坤.塔河南部志留系柯坪塔格组层序地层及沉积相.西南石油大学学报(自然科学版), 2011, 33(3):35-40. MA X J, ZHANG Z M, CHEN Z K. Stratigraphic sequence and sedimentary facies of Kepingtage Formation in the Silurian at the south area of Tahe oilfield. Journal of Southwest Petroleum University(Science & Technology Edition), 2011, 33(3):35-40.
[18] 刘若涵, 王明, 姜在兴.塔河地区志留系柯坪塔格组下段沉积相研究.沉积学报, 2016, 34(2):326-335. LIU R H, WANG M, JIANG Z X. Development of sedimentary facies type in Silurian lower Kepingtage Formation, Tahe area. Acta Sedimentologica Sinica, 2016, 34(2):326-335.
[19] 高日丽.塔里木盆地中央隆起带志留系沉积相及砂体展布特征.北京:中国地质大学, 2011. GAO R L. Analysis of sedimentary facies and sand distribution of Silurian in the central uplift of Tarim Basin. Beijing:China University of Geosciences, 2011.
[20] 陈楠.塔中地区志留系柯坪塔格组沉积相与砂体展布规律. 成都:成都理工大学, 2014. CHEN N. The study of Silurian sedimentation feature and regularities of sand body distribution in Tazhong area. Chengdu:Chengdu University of Technology, 2014.
[21] 谷茸, 云露, 朱秀香, 等.塔里木盆地顺北油田油气来源研究. 石油实验地质, 2020, 42(2):248-254. GU R, YUN L, ZHU X X, et al. Oil and gas sources in Shunbei Oilfield, Tarim Basin. Petroleum Geology and Experiment, 2020, 42(2):248-254.
[22] 吴鲜, 曹自成, 路清华, 等.塔里木盆地顺北地区白垩系原油成因类型与来源.石油实验地质, 2020, 42(2):255-262. WU X, CAO Z C, LU Q H, et al. Genetic types and sources of Cretaceous crude oil in Shunbei area, Tarim Basin. Petroleum Geology and Experiment, 2020, 42(2):255-262.
[23] 刘宝增.塔里木盆地顺北地区油气差异聚集主控因素分析:以顺北1号、顺北5号走滑断裂带为例.中国石油勘探, 2020, 25(3):83-95. LIU B Z. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area, Tarim Basin:Taking Shunbei No. 1 and No. 5 strike slip fault zones as examples. China Petroleum Exploration, 2020, 25(3):83-95.
[24] DALRYMPLE R W, ZAITLIN B A, BOYD R. Estuarine facies models, conceptual basis and stratigraphic implications. Journal of Sedimentary Research, 1992, 62(6):1130-1146.
[25] 漆立新, 李宗杰, 吕海涛.塔里木叠合盆地构造沉积演化与油气勘探图集.北京:科学出版社, 2020:1-224. QI L X, LI Z J, LYU H T. Atlas of tectonic sedimentary evolution and oil and gas exploration in the Tarim Superposed Basin. Beijing:Science Press, 2020:1-224.
[26] 何登发, 贾承造, 李德生, 等.塔里木多旋回叠合盆地的形成与演化.石油与天然气地质, 2005, 26(1):64-77. HE D F, JIA C Z, LI D S, et al. Formation and evolution of polycyclic superimposed Tarim Basin. Oil & Gas Geology, 2005, 26(1):64-77.
[27] 贾进华, 张宝民, 朱世海, 等.塔里木盆地志留纪地层、沉积特征与岩相古地理.古地理学报, 2006, 8(3):339-352. JIA J H, ZHANG B M, ZHU S H, et al. Stratigraphy, sedimentary characteristics and lithofacies palaeogeography of the Silurian in Tarim Basin. Journal of Palaeogeography, 2006, 8(3):339-352.
[28] 王莹莹.塔里木盆地志留系层序地层与沉积相研究.成都:成都理工大学, 2017. WANG Y Y. The study of sequence stratigraphy and depositional facies of Silurian in the Tarim Basin. Chengdu:Chengdu University of Technology, 2017.
[29] 冯增昭.单因素分析多因素综合作图法:定量岩相古地理重建.古地理学报, 2004, 6(1):3-19. FENG Z Z. Single factor analysis and multifactor comprehensive mapping method:Reconstruction of quantitative lithofacies Palaeogeography. Journal of Palaeogeography, 2004, 6(1):3-19.
[30] 林森虎, 汪梦诗, 袁选俊.大型坳陷湖盆定量化沉积相编图新方法:以鄂尔多斯盆地中部长7油层组为例. 岩性油气藏, 2017, 29(3):10-17. LIN S H, WANG M S, YUAN X J. A new quantitative method of sedimentary facies mapping of large lacustrine depression:A case from Chang 7 reservoir in central Ordos Basin. Lithologic Reservoirs, 2017, 29(3):10-17.
[1] YI Zhenli, SHI Fang, YIN Taiju, LI Bin, LI Meng, LIU Liu, WANG Zhukun, YU Ye. Provenance transformation and sedimentary filling response of Mesozoic in Halahatang-Hade area,Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(5): 56-66.
[2] MENG Qinghao, ZHANG Changmin, ZHANG Xianghui, ZHU Rui, XIANG Jianbo. Morphology,distribution and main controlling factors of modern distributive fluvial system in Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(4): 44-56.
[3] HE Wenyuan, CHEN Keyang. Prediction method for lithologic reservoirs in Doshan slope zone of South Turgai Basin,Kazakhstan [J]. Lithologic Reservoirs, 2024, 36(4): 1-11.
[4] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[5] CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39.
[6] JI Yubing, GUO Bingru, MEI Jue, YIN Zhijun, ZOU Chen. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 137-145.
[7] CHEN Shuyang, HE Yunfeng, WANG Lixin, SHANG Haojie, YANG Xinrui, YIN Yanshu. Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No. 1 fault zone,Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(2): 124-135.
[8] SUN Hanxiao, XING Fengcun, XIE Wuren, QIAN Hongshan. Lithofacies paleogeography evolution of Late Ordovician in Sichuan Basin and its surrounding areas [J]. Lithologic Reservoirs, 2024, 36(1): 121-135.
[9] SHI Buqing, DING Liangbo, MA Hongxia, SUN Hui, ZHANG Ying, XU Xiaoyong, WANG Hongping, FAN Guozhang. Characteristics of hydrocarbon accumulation in deep-water depositional system in offshore East Africa [J]. Lithologic Reservoirs, 2023, 35(6): 10-17.
[10] ZHU Xiuxiang, ZHAO Rui, ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No. 1 fault zone,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(5): 131-138.
[11] BU Xuqiang, WANG Laiyuan, ZHU Lianhua, HUANG Cheng, ZHU Xiuxiang. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(3): 152-160.
[12] SONG Xingguo, CHEN Shi, YANG Minghui, XIE Zhou, KANG Pengfei, LI Ting, CHEN Jiuzhou, PENG Zijun. Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution [J]. Lithologic Reservoirs, 2023, 35(3): 99-109.
[13] NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, ZHENG Jianfeng, ZHENG Xingping, YANG Zhao. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(2): 144-158.
[14] XU Zhuang, SHI Wanzhong, WANG Ren, LUO Fusong, XIA Yongtao, QIN Shuo, ZHANG Xiao. Hydrocarbon accumulation law and model of Cretaceous clastic rocks in western Tabei uplift [J]. Lithologic Reservoirs, 2023, 35(2): 31-46.
[15] HE Chunfeng, ZHANG Xiang, TIAN Jingchun, XIA Yongtao, YANG Yanru, CHEN Jie, WANG Xinyu. Sedimentary facies characteristics and sedimentary model of thin sand bodies of Lower Cretaceous Shushanhe Formation in Xinhe area, northern Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(1): 120-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: