岩性油气藏 ›› 2018, Vol. 30 ›› Issue (2): 120–128.doi: 10.12108/yxyqc.20180213

• 技术方法 • 上一篇    下一篇

裂缝对岩石电阻率的影响及其在含气饱和度计算中的应用

刘智颖1,2, 章成广1,2, 唐军1,2, 肖承文3   

  1. 1. 长江大学 油气资源与勘探技术教育部重点实验室, 武汉 430100;
    2. 长江大学 地球物理与石油资源学院, 武汉 430100;
    3. 中国石油塔里木油田分公司 勘探开发研究院, 新疆 库尔勒 841008
  • 收稿日期:2017-10-16 修回日期:2018-01-18 出版日期:2018-03-21 发布日期:2018-03-21
  • 第一作者:刘智颖(1985-),男,长江大学在读博士研究生,研究方向为地球探测与信息技术。地址:(430100)湖北省武汉市蔡甸区大学路特1号长江大学武汉校区。Email:lzykkww102@163.com。
  • 通信作者: 章成广(1963-),男,博士,教授,博士生导师,主要从事岩石物理学及声波测井方法等方面的研究与教学工作。Email:zhangcg@yangtzeu.edu.cn。
  • 基金资助:
    国家自然科学基金项目“基于声波测井数值与实验模拟的裂缝性储层渗透率定量评价方法研究”(编号:41372136)资助

Influence of fracture on rock resistivity and its application in saturation calculation

LIU Zhiying1,2, ZHANG Chengguang1,2, TANG Jun1,2, XIAO Chengwen3   

  1. 1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China;
    2. College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China;
    3. Research Institute of Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841008, Xinjiang, China
  • Received:2017-10-16 Revised:2018-01-18 Online:2018-03-21 Published:2018-03-21

摘要: 裂缝性致密砂岩储层含气饱和度计算的准确性取决于岩石电阻率测量值的可靠程度,而岩石电阻率的测量值又受控于裂缝的导电性、产状、宽度和密度等参数。因此,研究裂缝对岩石电阻率测量值的影响是正确建立致密砂岩储层含气饱和度计算公式的基础。在数值模拟基础上详细观察裂缝的导电性、产状、宽度和密度等参数对岩石电阻率测量值的影响,通过岩电实验对数值模拟结果进行检验,提出了一个适用于裂缝性致密砂岩储层含气饱和度计算的归一化岩石电阻率公式,改进了目前常用的双重孔隙介质模型。最后,将改进的双重孔隙介质模型用于塔里木盆地克深地区裂缝性致密砂岩储层的含气饱和度计算。计算结果表明,改进的双重孔隙介质模型符合克深地区岩石裂缝内含气饱和度高的特点,且与试油结论吻合度更高。

关键词: 煤层气, 高阶煤, 赋存特征, 开采技术, 多煤层, 小林华矿区, 黔北地区

Abstract: The accuracy of gas saturation calculation in fractured tight sandstone reservoir depends on the reliability of rock resistivity measurement, and the measurement of rock resistivity is controlled by the conductivity, occurrence, width and density of fractures. Therefore, the study of the influence of fracture on rock resistivity measurement is the foundation for establishing a formula for calculating the gas saturation of tight sandstone reservoirs. On the basis of numerical simulation, the influences of fracture conductivity, occurrence, width and density on the measurement of rock resistivity were observed. The results of numerical simulation were checked through rock resistivity experiment, and a normalized formula of rock resistivity suitable for calculating gas saturation of fractured tight sandstone reservoir was put forward, improving the dual porosity model commonly used for saturation calculation of fractured reservoirs. Finally, the improved dual porosity model was used to calculate the gas saturation of the fractured tight sandstone reservoirs in Keshen area of Tarim Basin. The calculation results show that the results of the improved dual porosity model are consistent with the characteristics of high gas saturation in rock fracture in Keshen area, and more consistent with the oil testing conclusion.

Key words: coalbed methane, high rank coal, occurrence characteristics, mining technology, multi-seams, Xiaolinhua coal mine, northern Guizhou

中图分类号: 

  • TE135
[1] 邓少贵, 王晓畅, 范宜仁. 裂缝性碳酸盐岩裂缝的双侧向测井响应特征及解释方法.地球科学, 2006, 31(6):846-850. DENG S G, WANG X C, FAN Y R. Response of dual laterolog to fractures in fractured carbonate formation and its interpretation. Earth Science, 2006, 31(6):846-850.
[2] 周改英, 刘向君. 致密砂岩储层岩电参数实验研究. 科技导报, 2011, 29(18):38-41. ZHOU G Y,LIU X J. Experimental research of rock electrical parameters for tight sandstone. Science & Technology Review, 2011, 29(18):38-41.
[3] 李善军, 肖承文,汪涵明, 等.裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释.地球物理学报, 1996, 39(6):845-852. LI S J, XIAO C W, WANG H M, et al. Mathematical model of dual laterolog response to fracture and quantitative interpretation of fracture porosity. Geophysics, 1996, 39(6):845-852.
[4] 欧阳健, 李善军.双侧向测井识别与评价渤海湾深层裂缝性砂岩油层的解释方法.测井技术, 2001, 25(4):282-286. OUYANG J, LI S J. An interpretation method for identifying and evaluating fractured sand oil reservoirs in deep zone in Bohai Gulf using dual laterolog responses. Well Logging Technology, 2001, 25(4):282-286.
[5] 邓少贵, 莫宣学, 卢春利, 等.缝-洞型地层缝洞的双侧向测井响应数值模拟.石油勘探与开发, 2012, 39(6):706-712. DENG S G, MO X X, LU C L, et al. Numerical simulation of the dual laterolog response to fractures and caves in fracturedcavernous formation. Petroleum Exploration and Development, 2012, 39(6):706-712.
[6] 陈啸宇, 章成广, 朱雷, 等.致密砂岩储层地应力对电阻率测井的影响.岩性油气藏, 2016, 28(1):106-110. CHENG X Y, ZHANG C G, ZHU L, et al. Influence of ground stress on resistivity logging response in tight sandstone reservoir. Lithologic Reservoirs, 2016, 28(1):106-110.
[7] 刘迪仁, 夏培, 万文春, 等.水平井碳酸盐岩裂缝型储层双侧向测井响应特性.岩性油气藏, 2012, 24(3):1-4. LIU D R, XIA P, WAN W C, et al. Characteristics of dual laterolog response of carbonate fracture reservoirs in horizontal well. Lithologic Reservoirs, 2012, 24(3):1-4.
[8] 刘智颖.水平井测井响应数值模拟.武汉:长江大学, 2014. LIU Z Y. Numerical simulation about horizontal well logging response. Wuhan:Yangtze University, 2014.
[9] 曹宇, 张超谟, 张占松, 等.裂缝型储层电成像测井响应三维数值模拟.岩性油气藏, 2014, 16(1):92-104. CAO Y, ZHANG C M, ZHANG Z S, et al. Three-dimensional numerical simulation of electrical imaging logging response in fractured reservoir. Lithologic Reservoirs, 2014, 16(1):92-104.
[10] WESTERN ATLAS. 1515 EA/MA HDIL tool operation and maintaince manual:USA, 130551-025.2006.
[11] 汪忠浩, 章成广.低渗砂岩储层测井评价方法.北京:石油工业出版社, 2004. WANG Z H, ZHANG C G. Logging method for low permeability sandstone reservoir. Beijing:Petroleum Industry Press, 2004.
[12] 尹帅, 丁文龙, 单钰铭, 等.利用致密砂岩储层电导率参数求取渗透率.岩性油气藏, 2016, 28(6):117-124. YIN S, DING W L, SHAN Y M, et al. Permeability calculation of tight sandstone reservoir by conductivity parameters. Lithologic Reservoirs, 2016, 28(6):117-124.
[13] 楚翠金, 夏志林, 杨志强.延川南区块致密砂岩气测井识别与评价技术.岩性油气藏, 2017, 29(2):131-138. CHU C J, XIA Z L, YANG Z Q. Logging identification and evaluation of tight sandstone gas in the southern Yanchuan block. Lithologic Reservoirs, 2017, 29(2):131-138.
[14] 俎栋林.电动力学.北京:清华大学出版社, 2006. JU D L. Electrodynamics. Beijing:Tsinghua University Press, 2006.
[15] 金建铭.电磁场有限元方法.北京:高等教育出版社, 2003. JIN J M. Element method of electromagnetic field. Beijing:Higher Education Press, 2003.
[16] 郭兆胜, 张登荣.一种改进的Delaunay高效三角网格的生成算法.遥感信息, 2005, 2(1):103-105. GUO Z S, ZHANG D R. An improved high-efficiency algorithm of Delaunay triangulation generation. Journal of Remote Sensing, 2005, 2(1):103-105.
[17] 李霞, 赵文智, 周灿灿, 等.低孔低渗碎屑岩储集层双孔隙饱和度模型.石油勘探与开发, 2012, 39(1):82-89. LI X, ZHAO W Z, ZHOU C C, et al. Dual-porosity saturation model of low-porosity and low-permeability clastic reservoirs. Petroleum Exploration and Development, 2012, 39(1):82-89.
[18] 余勇.复杂多相介质有效电导率数值模拟研究.北京:中国科学技术大学, 2010. YU Y. Study on numerical modeling of effective conductivity for complex multi-phase medium. Beijing:University of Science and Technology of China, 2010.
[19] 荆万学, 陈永吉.浅探阿尔奇公式的物理学原型.测井技术, 1997, 21(4):289-291. JIN W X, CHEN Y J. On the original physical model of Archie formula. Well Logging Technology, 1997, 21(4):289-291.
[20] 宋慧莹.裂缝性含气储层参数测井评价研究.青岛:中国石油大学(华东), 2010. SONG H Y. Logging evaluation study of fractured gas reservoir. Qingdao:China University of Petroleum(East China), 2010.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[3] 余海波. 东濮凹陷构造特征及古生界有利勘探区带评价[J]. 岩性油气藏, 2022, 34(6): 72-79.
[4] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
[5] 未志杰, 康晓东. 煤层气藏强化采收全流固耦合模型[J]. 岩性油气藏, 2021, 33(5): 181-188.
[6] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[7] 苏朋辉, 夏朝辉, 刘玲莉, 段利江, 王建俊, 肖文杰. 澳大利亚M区块低煤阶煤层气井产能主控因素及合理开发方式[J]. 岩性油气藏, 2019, 31(5): 121-128.
[8] 叶亚培, 唐书恒, 郗兆栋, 张耀选. 黔北地区牛蹄塘组页岩矿物组成特征与脆性评价[J]. 岩性油气藏, 2019, 31(4): 62-71.
[9] 未志杰, 康晓东, 刘玉洋, 曾杨. 煤层气藏全流固耦合数学模型[J]. 岩性油气藏, 2019, 31(2): 151-158.
[10] 淮银超, 张铭, 谭玉涵, 王鑫. 澳大利亚东部S区块煤层气储层特征及有利区预测[J]. 岩性油气藏, 2019, 31(1): 49-56.
[11] 高为, 金军, 易同生, 赵凌云, 张曼婷, 郑德志. 黔北小林华矿区高阶煤层气藏特征及开采技术[J]. 岩性油气藏, 2017, 29(5): 140-147.
[12] 艾林, 周明顺, 张杰, 梁霄, 钱博文, 刘迪仁. 基于煤岩脆性指数的煤体结构测井定量判识[J]. 岩性油气藏, 2017, 29(2): 139-144.
[13] 李传亮, 朱苏阳, 彭朝阳, 王凤兰, 杜庆龙, 由春梅. 煤层气井突然产气机理分析[J]. 岩性油气藏, 2017, 29(2): 145-149.
[14] 张廷山, 何映颉, 伍坤宇, 林丹, 张朝. 筠连地区上二叠统宣威组沉积相及聚煤控制因素[J]. 岩性油气藏, 2017, 29(1): 1-10.
[15] 吴雅琴,邵国良,徐耀辉,王 乔,刘振兴,帅 哲. 沁水盆地郑庄区块煤层气开发地质单元划分及开发方式优化研究[J]. 岩性油气藏, 2016, 28(6): 125-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .