岩性油气藏 ›› 2020, Vol. 32 ›› Issue (2): 169–176.doi: 10.12108/yxyqc.20200219

• 石油工程 • 上一篇    

碳酸盐岩储层酸压裂缝高度延伸规律——以川西栖霞组为例

罗志锋1,2, 黄静云1,2, 何天舒1,2, 韩明哲1,2, 张锦涛3   

  1. 1. 西南石油大学 石油与天然气工程学院, 成都 610500;
    2. 西南石油大学 油气藏地质及开发工程国家重点实验室, 成都 610500;
    3. 中国石油西南油气田分公司, 成都 610051
  • 收稿日期:2019-12-18 修回日期:2020-03-04 发布日期:2020-04-29
  • 第一作者:罗志锋(1980-),男,博士,副教授,主要从事油气藏动态及增产改造技术理论方面的研究工作。地址:(610500)四川省成都市新都区新都大道8号。Email:lzf03429@163.com
  • 通信作者: 黄静云(1995-),男,西南石油大学在读硕士研究生,研究方向为酸化/压裂、油气藏增产理论。Email:HuangJY_1024@163.com。
  • 基金资助:
    国家自然科学基金项目“缝洞型碳酸盐岩靶向酸压复杂裂缝扩展机理及调控方法研究”(编号:5197041731)资助

Extending regularity of fracture height by acid fracturing in carbonate reservoir: a case study of Qixia Formation in western Sichuan

LUO Zhifeng1,2, HUANG Jingyun1,2, HE Tianshu1,2, HAN Mingzhe1,2, ZHANG Jintao3   

  1. 1. School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China;
    2. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    3. PetroChina Southwest Oilfield Company, Chengdu 610051, China
  • Received:2019-12-18 Revised:2020-03-04 Published:2020-04-29

摘要: 针对川西深层海相碳酸盐岩的开发,酸压是非常有效的增产手段;川西深层海相碳酸盐岩储层存在非均质性强、储层薄、储隔层应力差较小等问题,目前改造的技术难题是缝高的控制。针对川西X气井地质情况,基于有限元数值模拟方法,研究了工程地质因素对缝高的影响规律,并通过FracPT软件净压力拟合、微地震数据和生产井温数据获得的缝高结果,验证了本模型的合理性。结果表明,减小工作液黏度、施工排量和注液规模、增大储隔层间应力差有利于控制缝高;基于该结果,指导了X气井施工参数优化,施工后X气井测试日产气量10.45万m3,酸压施工增产效果好。该研究成果对于川西深层海相碳酸盐岩的酸压优化设计和现场施工具有指导作用。

关键词: 碳酸盐岩油气藏, 酸压, 裂缝高度, ABAQUS, 有限元, 三维模拟

Abstract: Acid fracturing is a very effective means of increasing production for the development of deep marine carbonates in western Sichuan. Currently, there exists many problems in the development of deep marine carbonates in western Sichuan such as strong heterogeneity, thin reservoirs, and small differences of reservoir stress. Technically, the main problem in transformation is the control of fracture height. Therefore, the influence of engineering geological factors on fracture height was studied with the geological conditions of the X gas well in western Sichuan into consideration by means of finite element numerical simulation. Moreover, this simulated model was verified by the results of the fracture height obtained by net pressure fitting on FracPT software, microearthquake data and data of production well temperature. For last analysis, the results of this paper show that the viscosity of the working fluid, the construction displacement and the injection scale, and the difference increase in inter-stress of the reservoir barrier are good for controlling the fracture height. The result well guides the parameter optimization of the X gas well construction. After the construction, the daily gas production of the X gas well test is 104, 500 m3. This paper plays a guiding role in the optimal design of acid fracturing and on-site construction in deep marine carbonate rocks in western Sichuan.

Key words: carbonate reservoir, acid fracturing, fracture height, ABAQUS, finite element method, three dimensional numerical simulation

中图分类号: 

  • TE323
[1] 赵立强, 高俞佳, 袁学芳.高温碳酸盐岩储层酸蚀裂缝导流能力研究.油气藏评价与开发, 2017, 7(1):20-26. ZHAO L Q, GAO Y J, YUAN X F.Study on the conductivity of acid corrosion fracture in high temperature carbonate reservoir. Reservoir Evaluation and Development, 2017, 7(1):20-26.
[2] LUO Z F, ZHANG N L, ZHAO L Q, et al. Numerical evaluation of shear and tensile stimulation volumes based on natural fracture failure mechanism in tight and shale reservoirs. Environmental Earth Sciences, 2019, 78(5):1-10.
[3] 王永辉, 李永平, 程兴生.高温深层碳酸盐岩储层酸化压裂改造技术.石油学报, 2012, 33(增刊2):166-173. WANG Y H, LI Y P, CHENG X S. Acidizing and fracturing technology of high temperature and deep carbonate reservoir. Acta Petrolei Sinica, 2012, 33(Suppl 2):166-173.
[4] 李宾元. 裂缝中垂直裂缝高度的讨论. 石油钻采工艺, 1984(5):43-49. LI B Y. Discussion on the height of vertical fracture in fracture. Oil Drilling & Production Technology, 1984(5):43-49.
[5] 胡阳明, 胡永全, 赵金洲.裂缝高度影响因素分析及控缝高对策技术研究.重庆科技学院学报(自然科学版), 2009, 11(1):28-31. HU Y M, HU Y Q, ZHAO J Z. Analysis of factors influencing fracture height and research on countermeasures for controlling fracture height. Journal of Chongqing University of Science and Technology(Natural Science Edition), 2009, 11(1):28-31.
[6] 李年银, 赵立强, 张倩, 等.裂缝高度延伸诊断与控制技术.大庆石油地质与开发, 2008, 27(5):81-84. LI N Y, ZHAO L Q, ZHANG Q, et al. Fracture height extension diagnosis and control technology. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(5):81-84.
[7] 李勇明, 郭建春, 赵金洲.溶洞型碳酸盐岩储层酸压效果预测模型.特种油气藏, 2009, 16(2):37-39. LI Y M, GUO J C, ZHAO J Z. Prediction model of acid fracturing effect for carbonate reservoir of karst cave type. Special Oil & Gas Reservoirs, 2009, 16(2):37-39.
[8] LUO Z F, ZHANG N L, ZHAO L Q, et al. Seepage-stress coupling mechanism for intersections between hydraulic fractures and natural fractures. Journal of Petroleum Science and Engineering, 2018, 171:37-47.
[9] 苟波, 马辉运, 刘壮.非均质碳酸盐岩油气藏酸压数值模拟研究进展与展望.天然气工业, 2019, 39(6):87-98. GOU B, MA Y H, LIU Z. The development and prospect of numerical simulation of acid pressure in heterogeneous carbonate reservoir. Natural Gas Industry, 2019, 39(6):87-98.
[10] 刁瑞. 地震数据提高分辨率处理监控评价技术. 岩性油气藏,2020, 32(1):94-101. DIAO R. Monitoring and evaluation technology for improving resolution of seismic data.Jiyang Depression. Lithologic Reservoirs, 2020, 32(1):94-101.
[11] 岳迎春, 郭建春.重复压裂转向机制流-固耦合分析.岩土力学, 2012, 33(10):3189-3193. YUE Y C, GUO J C. Fluid solid coupling analysis of refracturing steering mechanism. Rock and Soil Mechanics, 2012, 33(10):3189-3193.
[12] 陈卫忠,伍国军,贾善坡. ABAQUS在隧道及地下工程中的应用. 北京:中国水利水电出版社, 2010. CHEN W Z, WU G J, JIA S P. Application of ABAQUS in tunnel and underground engineering. Beijing:China Water & Power Press, 2010.
[13] 费康,张建伟. ABAQUS在岩土工程中的应用. 北京:中国水利水电出版社, 2010. FEI K, ZHANG J W. Application of ABAQUS in geotechnical engineering. Beijing:China Water & Power Press, 2010.
[14] 潘林华, 张士诚, 程礼军.水平井"多段分簇" 压裂簇间干扰的数值模拟, 天然气工业, 2014, 34(1):74-79. PAN L H, ZHANG S C, CHENG L J. Numerical simulation of cluster interference in multi-stage cluster fracturing of horizontal wells. Natural Gas Industry, 2014, 34(1):74-79.
[15] 李年银, 赵立强, 刘平礼. 裂缝高度延伸机理及控缝高酸压技术研究.特种油气藏, 2006(2):61-63. LI N Y, ZHAO L Q, LIU P L. Study on the mechanism of high fracture extension and the technology of controlling fracture and high acid fracturing. Special Oil & Gas Reservoirs, 2006(2):61-63.
[1] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[2] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[3] 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168.
[4] 史文洋, 姚约东, 程时清, 顾少华, 石志良. 川西潮坪相裂缝型碳酸盐岩分层酸压井压力动态分析[J]. 岩性油气藏, 2020, 32(1): 152-160.
[5] 姜瑞忠, 张春光, 郜益华, 耿艳宏, 余辉, 李昊远. 缝洞型碳酸盐岩油藏水平井分形非线性渗流[J]. 岩性油气藏, 2019, 31(6): 118-126.
[6] 吴丰, 姚聪, 丛林林, 袁龙, 闻竹, 张凤生, 习研平. 岩石气水两相渗流的玻璃刻蚀驱替实验与有限元数值模拟对比[J]. 岩性油气藏, 2019, 31(4): 121-132.
[7] 刘智颖, 章成广, 唐军, 肖承文. 裂缝对岩石电阻率的影响及其在含气饱和度计算中的应用[J]. 岩性油气藏, 2018, 30(2): 120-128.
[8] 代冬冬, 房启飞, 万效国, 蔡泉. 哈拉哈塘地区奥陶系岩溶古河道识别及其成藏意义[J]. 岩性油气藏, 2017, 29(5): 89-96.
[9] 曹宇,张超谟,张占松,张冲,熊镭. 裂缝型储层电成像测井响应三维数值模拟[J]. 岩性油气藏, 2014, 26(1): 92-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .