岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 155–162.doi: 10.12108/yxyqc.20200416

• 油气田开发 • 上一篇    下一篇

渗吸效应对裂缝性低渗砾岩油藏开发的影响——以玛湖乌尔禾组储层为例

曹旭升1, 韩昀1, 张继卓2, 罗志伟3   

  1. 1. 中国地质大学(北京)能源学院, 北京 100083;
    2. 中国石油新疆油田分公司 准东采油厂勘探开发研究所, 新疆 阜康 831511;
    3. 中国石化新疆新春石油开发有限公司, 山东 东营 257000
  • 收稿日期:2019-12-05 修回日期:2020-01-22 出版日期:2020-08-01 发布日期:2020-06-16
  • 作者简介:曹旭升(1995-),男,中国地质大学(北京)在读硕士研究生,研究方向为石油地质与油藏开发。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)。Email:1805069151@qq.com。
  • 基金资助:
    “十三五”国家重大专项“准噶尔盆地致密油开发示范工程”(编号:2017ZX05070)资助

Influence of imbibition on the development of fractured low permeability conglomerate reservoir: a case stuey from Urho Formation in Mahu oilfield

CAO Xusheng1, HAN Yun1, ZHANG Jizhuo2, LUO Zhiwei3   

  1. 1. College of Energy Resources, China University of Geosciences(Beijing), Beijing 100083, China;
    2. Exploration and Development Research Institute of Zhundong Oil Production Plant, PetroChina Xinjiang Oilfield Company, Fukang 831511, Xinjiang, China;
    3. Xinjiang Xinchun Petroleum Development Co., Ltd, Sinopec, Dongying 257000, Shandong, China
  • Received:2019-12-05 Revised:2020-01-22 Online:2020-08-01 Published:2020-06-16

摘要: 玛湖砾岩低渗储层的开发依赖裂缝,裂缝-基质间的渗吸效应对开发效果具有重要影响,但目前相关研究还极其薄弱。借助核磁共振技术研究了玛湖乌尔禾组砾岩的渗吸效应孔隙动用特征,并对其裂缝-基质间渗吸规律进行了量化表征,进一步将表征方程考虑到双孔、双渗模型中,在油藏尺度对比了渗吸效应对玛湖低渗砾岩油藏水平井开发的影响。研究发现,玛湖乌尔禾组砾岩岩心主要为中小孔隙(T2<100 ms),渗吸效应平均采收率可达32.43%,其中小孔隙(T2<10 ms)平均采收率为31.27%,中孔隙(10 < T2 < 100 ms)平均采收率为37.11%,渗吸规律较好,符合改进后的MA指数模型。依据实验结果改进双孔、双渗模型后,模拟水平井开发5 a后发现,玛湖低渗砾岩油藏考虑渗吸效应时裂缝采收率下降了24.3%,基质采收率提高了4.6%,平均采收率提高了2.0%。该研究对后期制定合理的提采措施具有指导意义。

关键词: 渗吸效应, 裂缝, 低渗透, 砾岩油藏, 双孔、双渗, 乌尔禾组

Abstract: The development of low permeability conglomerate reservoir in Mahu oilfield is strongly dependent on fractures,and the imbibition between fractures and matrix has an important influence on its development,but the relevant research is very weak at present. The characteristics of imbibition effect of conglomerate of Urho Formation in Mahu oilfield were studied by means of NMR technology,and the imbibition law between fracture and matrix was quantitatively characterized. Furthermore,the influence of imbibition effect on horizontal well development of low permeability conglomerate reservoir in Mahu oilfield was studied by taking the characterization equation into account in the dual-porosity and dual-permeability model. The results show that the conglomerate core from Urho Formation is mainly composed of medium and small pores(T2 <100 ms). The average oil recovery in imbibition effect is 32.43%,the average oil recovery of small pores(T2 <10 ms)is 31.27%,and that of medium pores(10 < T2 < 100 ms) is 37.11%,and its imbibition law is in good agreement with the improved MA index transport model. According to the experimental results based on the dual-porosity and dual-permeability model, after five years of horizontal well development,the fracture recovery was reduced by 24.3%,the matrix recovery was increased by 4.6%,and average recovery was increased by 2.0%. This study is of guiding significance for formulating scientific measures of EOR in the later stage.

Key words: imbibition effect, fractures, low permeability, conglomerate reservoir, dual-porosity and dualpermeability, Urho Formation

中图分类号: 

  • TE348
[1] 唐勇, 徐洋, 李亚哲, 等.玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义.新疆石油地质, 2018, 39(1):16-22. TANG Y, XU Y, LI Y Z, et al. Sedimentation model and exploration significance of large scaled shallow retrogradation fan Delta in Mahu Sag. Xinjiang Petroleum Geology, 2018, 39(1):16-22.
[2] 张有平, 盛世锋, 高祥录. 玛湖凹陷玛2井区下乌尔禾组扇三角洲沉积及有利储层分布. 岩性油气藏, 2015, 27(5):204-210. ZHANG Y P, SHENG S F, GAO X L. Fan delta sedimentation and favorable reservoir distribution of the lower Urho Formation in Ma 2 well block of Mahu Depression. Lithologic Reservoirs, 2015, 27(5):204-210.
[3] 唐勇, 郭文建, 王霞田, 等.玛湖凹陷砾岩大油区勘探新突破及启示.新疆石油地质, 2019, 40(2):127-137. TANG Y, GUO W J, WANG X T, et al. A new breakthrough in exploration of large conglomerate oil province in Mahu Sag and its implications. Xinjiang Petroleum Geology, 2019, 40(2):127-137.
[4] 李建民, 吴宝成, 赵海燕, 等玛湖致密砾岩油藏水平井体积压裂技术适应性分析. 中国石油勘探, 2019, 24(2):250-259. LI J M, WU B C, ZHAO H Y, et al. Adaptability of horizontal well volume fracturing to tight conglomerate reservoirs in Mahu oilfield. China Petroleum Exploration, 2019, 24(2):250-259.
[5] 李想, 肖春林, 袁述武, 等. 特低渗透砾岩油藏渗流机理研究:以八区下乌尔禾组油藏为例. 新疆石油天然气, 2015, 11(1):37-41. LI X, XIAO C L, YUAN S W, et al. Research on seepage flow mechanism of extra low permeability conglomerate reservoir:Taking the district eight lower wuerhe reservoir as an example. Xinjiang Oil & Gas, 2015, 11(1):37-41.
[6] 程晓倩, 刘华勋, 熊伟, 等. 新疆低渗透砂砾岩油藏自发渗吸实验研究. 科学技术与工程, 2013, 13(26):7793-7797. CHENG X Q, LIU H X, XIONG W, et al. Experimental research of spontaneous imbibition in low-permeability glutenite reservoir. Science Technology and Engineering, 2013, 13(26):7793-7797.
[7] 吕建荣, 谭锋奇, 许长福, 等. 克拉玛依砾岩油藏储层分类特征及水驱油规律. 东北石油大学学报, 2015, 39(4):21-30. LYU J R, TAN F Q, XU C F, et al. Reservoir classification characteristics and water displaced oil laws of conglomerate reservoir in Karamay oilfield. Journal of Northeast Petroleum University, 2015, 39(4):21-30.
[8] 姚同玉, 李继山, 王建, 等.裂缝性低渗透油藏的渗吸机理及有利条件.吉林大学学报:工学版, 2009, 39(4):937-940. YAO T Y, LI J S, WANG J, et al. Mechanisms and optimal conditions of imbibition in naturally fractured low-permeability reservoir. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(4):937-940.
[9] 孟庆帮, 刘慧卿, 王敬.天然裂缝性油藏渗吸规律.断块油气田, 2014, 21(3):330-334. MENG Q B, LIU H Q, WANG J. Imbibition law of naturally fractured reservoirs. Fault-Block Oil and Gas Field, 2014, 21(3):330-334.
[10] YU L, EVJE S, KLEPPE H, et al. Spontaneous imbibition of seawater into preferentially oil-wet chalk cores-Experiments and simulations. Journal of Petroleum Science and Engineering, 2009, 66(3/4):171-179.
[11] 况晏, 司马立强, 瞿建华, 等.致密砂砾岩储层孔隙结构影响因素及定量评价:以玛湖凹陷玛131井区三叠系百口泉组为例.岩性油气藏, 2017, 29(4):91-100. KUANG Y, SIMA L Q, QU J H, et al. Influencing factors and quantitative evaluation for pore structure of tight glutenite reservoir:a case of the Triassic Baikouquan Formation in Ma 131 well field, Mahu Sag. Lithologic Reservoirs, 2017, 29(4):91-100.
[12] 李闽, 王浩, 陈猛.致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2018, 30(1):140-149. LI M, WANG H, CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:a case study of Lucaogou Formation in Jimsar Sag, NW China. Lithologic Reservoirs, 2018, 30(1):140-149.
[13] 郭公建,谷长春. 水驱油孔隙动用规律的核磁共振实验研究. 西安石油大学学报(自然科学版), 2005, 20(5):45-49. GUO G J, GU C C. Experimental study of active pore distribution during water driving by using NMR. Journal of Xi'an Shiyou University(Natural Science Edition), 2005, 20(5):45-49.
[14] 刘秀婵, 陈西泮, 刘伟, 等.致密砂岩油藏动态渗吸驱油效果影响因素及应用.岩性油气藏, 2019, 31(5):114-120. LIU X C, CHEN X P, LIU W, et al. Influencing factors of dynamic imbibition displacement effect in tight sandstone reservoir and application. Lithologic Reservoirs, 2019, 31(5):114-120.
[15] 李爱芬, 王桂娟, 何冰清, 等. 低渗裂缝地层渗吸机理及其影响因素规律研究//中国力学学会流体力学专业委员会.第九届全国流体力学学术会议论文摘要集.青岛, 2016. LI A F, WANG G J, HE B Q, et al. Study on imbibition mechanism and influencing factors of low permeability fractured formation//Chinese Society of Theoretical and Applied Mechanics. Proceedings of the 9th National Conference on Fluid Mechanics. Qingdao, 2016.
[16] 蔡建超,郁伯铭. 多孔介质自发渗吸研究进展. 力学进展, 2013,42(6):735-754. CAI J C, YU B M. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2013, 42(6):735-754.
[17] ARONOFSKY J S, MASS'E L, NATANSON S G. A model for the mechanism of oil recovery from the porous matrix due to water invasion in fractured reservoirs. TRANS. AIME, 1958, 213:17-19.
[18] MA S X, MORROW N R, ZHANG X Y. Generalized scaling of spontaneous imbibition data for strongly water-wet systems. J. PET. SCI. ENG., 1997, 18(3/4):165-178.
[19] HAMON G, VIDAL J. Scaling-up the capillary imbibition process from laboratory experiments on homogeneous and heterogeneous samples. SPE 15852, 1986.
[20] KAZEMI H, GILMAN J R, EL-SHARKAWAY A M. Analytical and numerical solution of oil recovery from fractured reservoirs with empirical transfer functions. Spere, 1992, 7(2):219-227.
[21] 孙业恒, 时付更, 王成峰, 等.低渗透砂岩油藏储集层双孔双渗模型的建立方法.石油勘探与开发, 2004, 31(4):79-82. SUN Y H, SHI F G, WANG C F, et al. Modeling of dual-porosity and dual-permeability for low-permeability sandstone reservoir. Petroleum Exploration & Development, 2004, 31(4):79-82.
[22] SARMA P. New transfer functions for simulation of naturally fractured reservoir with dual porosity models. Palo Alto:Stanford University, 2003.
[23] 刘浪. 裂缝性油藏渗吸开采数值模拟研究. 成都:西南石油大学, 2006. LIU L. Numerical simulation of imbibition in fractured reservoir. Chengdu:Southwest Petroleum University, 2006.
[24] 刘涛, 石善志, 郑子君, 等.地质工程一体化在玛湖凹陷致密砂砾岩水平井开发中的实践. 中国石油勘探, 2018, 23(2):90-103. LIU T, SHI S Z, ZHENG Z J, et al. Application of geology engineering integration for developing tight oil in glutenite reservoir by horizontal wells in Mahu Sag. China Petroleum Exploration, 2018, 23(2):90-103.
[25] 庞德新.砂砾岩储层成因差异及其对储集物性的控制效应:以玛湖凹陷玛2井区下乌尔禾组为例.岩性油气藏, 2015, 27(5):149-154. PANG D X. Sedimentary genesis of sand-conglomerate reservoir and its control effect on reservoir properties:a case study of the lower Urho Formation in Ma 2 well block of Mahu Depression. Lithologic Reservoirs, 2015, 27(5):149-154.
[26] 王剑, 靳军, 张宝真, 等.玛湖凹陷东斜坡区下乌尔禾组砂砾岩储层孔隙形成机理及优势储层成因分析. 科学技术与工程, 2015, 15(23):136-142. WANG J, JIN J, ZHANG B Z, et al. Pore formation mechanism and genesis of advantage reservoir of Permian lower Urho Formation glutenite reservoir in the Madong area, Junggar Basion. Science Technology and Engineering, 2015, 15(23):136-142.
[27] 姜华. 低渗透油藏水平井开发优化设计. 青岛:中国石油大学(华东),2013. JIANG H. Optimization design of horizontal well in low permeability reservoir. China University of Petroleum(East China), 2013.
[28] 石立华, 程时清, 常毓文, 等.延长油田水平井开发模式矿场实践.钻采工艺, 2019, 42(5):69-72. SHI L H, CHENG S Q, CHANG Y W, et al. Field practice of horizontal well development mode in Yanchang Oilfield. Drilling & Production Technology, 2019, 42(5):69-72.
[1] 马永平, 张献文, 朱卡, 王国栋, 潘树新, 黄林军, 张寒, 关新. 玛湖凹陷二叠系上乌尔禾组扇三角洲沉积特征及控制因素[J]. 岩性油气藏, 2021, 33(1): 57-70.
[2] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[3] 关新, 潘树新, 曲永强, 许多年, 张寒, 马永平, 王国栋, 陈雪珍. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力[J]. 岩性油气藏, 2021, 33(1): 90-98.
[4] 孙夕平, 张昕, 李璇, 韩永科, 王春明, 魏军, 胡英, 徐光成, 张明, 戴晓峰. 基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J]. 岩性油气藏, 2021, 33(1): 220-228.
[5] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[6] 雷海艳, 樊顺, 鲜本忠, 孟颖, 杨红霞, 晏奇, 齐婧. 玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制[J]. 岩性油气藏, 2020, 32(5): 102-112.
[7] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[8] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[9] 陈更新, 王建功, 杜斌山, 刘应如, 李艳丽, 杨会洁, 李志明, 俞晓峰. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
[10] 冯炜, 杨晨, 陶善浔, 王财忠, 陆彦颖, 张路锋, 周福建. 碳酸盐岩酸蚀裂缝表面形态特征的实验研究[J]. 岩性油气藏, 2020, 32(3): 166-172.
[11] 张璐, 何峰, 陈晓智, 祝彦贺, 韩刚, 李祺鑫. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏, 2020, 32(2): 108-114.
[12] 何健, 武刚, 聂文亮, 刘松鸣, 黄伟. 基于近似支持向量机的裂缝分类方法[J]. 岩性油气藏, 2020, 32(2): 115-121.
[13] 代波, 王磊飞, 庄建, 袁维彬, 王学生. 超低渗透油藏CO2驱最小混相压力实验[J]. 岩性油气藏, 2020, 32(2): 129-133.
[14] 罗志锋, 黄静云, 何天舒, 韩明哲, 张锦涛. 碳酸盐岩储层酸压裂缝高度延伸规律——以川西栖霞组为例[J]. 岩性油气藏, 2020, 32(2): 169-176.
[15] 张意超, 陈民锋, 屈丹, 毛梅芬, 杨子由. X油田特低渗透油藏井网加密效果预测方法[J]. 岩性油气藏, 2020, 32(1): 144-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .