岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 155–162.doi: 10.12108/yxyqc.20200416

• 油气田开发 • 上一篇    下一篇

渗吸效应对裂缝性低渗砾岩油藏开发的影响——以玛湖乌尔禾组储层为例

曹旭升1, 韩昀1, 张继卓2, 罗志伟3   

  1. 1. 中国地质大学(北京)能源学院, 北京 100083;
    2. 中国石油新疆油田分公司 准东采油厂勘探开发研究所, 新疆 阜康 831511;
    3. 中国石化新疆新春石油开发有限公司, 山东 东营 257000
  • 收稿日期:2019-12-05 修回日期:2020-01-22 出版日期:2020-08-01 发布日期:2020-06-16
  • 第一作者:曹旭升(1995-),男,中国地质大学(北京)在读硕士研究生,研究方向为石油地质与油藏开发。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)。Email:1805069151@qq.com。
  • 基金资助:
    “十三五”国家重大专项“准噶尔盆地致密油开发示范工程”(编号:2017ZX05070)资助

Influence of imbibition on the development of fractured low permeability conglomerate reservoir: a case stuey from Urho Formation in Mahu oilfield

CAO Xusheng1, HAN Yun1, ZHANG Jizhuo2, LUO Zhiwei3   

  1. 1. College of Energy Resources, China University of Geosciences(Beijing), Beijing 100083, China;
    2. Exploration and Development Research Institute of Zhundong Oil Production Plant, PetroChina Xinjiang Oilfield Company, Fukang 831511, Xinjiang, China;
    3. Xinjiang Xinchun Petroleum Development Co., Ltd, Sinopec, Dongying 257000, Shandong, China
  • Received:2019-12-05 Revised:2020-01-22 Online:2020-08-01 Published:2020-06-16

摘要: 玛湖砾岩低渗储层的开发依赖裂缝,裂缝-基质间的渗吸效应对开发效果具有重要影响,但目前相关研究还极其薄弱。借助核磁共振技术研究了玛湖乌尔禾组砾岩的渗吸效应孔隙动用特征,并对其裂缝-基质间渗吸规律进行了量化表征,进一步将表征方程考虑到双孔、双渗模型中,在油藏尺度对比了渗吸效应对玛湖低渗砾岩油藏水平井开发的影响。研究发现,玛湖乌尔禾组砾岩岩心主要为中小孔隙(T2<100 ms),渗吸效应平均采收率可达32.43%,其中小孔隙(T2<10 ms)平均采收率为31.27%,中孔隙(10 < T2 < 100 ms)平均采收率为37.11%,渗吸规律较好,符合改进后的MA指数模型。依据实验结果改进双孔、双渗模型后,模拟水平井开发5 a后发现,玛湖低渗砾岩油藏考虑渗吸效应时裂缝采收率下降了24.3%,基质采收率提高了4.6%,平均采收率提高了2.0%。该研究对后期制定合理的提采措施具有指导意义。

关键词: 渗吸效应, 裂缝, 低渗透, 砾岩油藏, 双孔、双渗, 乌尔禾组

Abstract: The development of low permeability conglomerate reservoir in Mahu oilfield is strongly dependent on fractures,and the imbibition between fractures and matrix has an important influence on its development,but the relevant research is very weak at present. The characteristics of imbibition effect of conglomerate of Urho Formation in Mahu oilfield were studied by means of NMR technology,and the imbibition law between fracture and matrix was quantitatively characterized. Furthermore,the influence of imbibition effect on horizontal well development of low permeability conglomerate reservoir in Mahu oilfield was studied by taking the characterization equation into account in the dual-porosity and dual-permeability model. The results show that the conglomerate core from Urho Formation is mainly composed of medium and small pores(T2 <100 ms). The average oil recovery in imbibition effect is 32.43%,the average oil recovery of small pores(T2 <10 ms)is 31.27%,and that of medium pores(10 < T2 < 100 ms) is 37.11%,and its imbibition law is in good agreement with the improved MA index transport model. According to the experimental results based on the dual-porosity and dual-permeability model, after five years of horizontal well development,the fracture recovery was reduced by 24.3%,the matrix recovery was increased by 4.6%,and average recovery was increased by 2.0%. This study is of guiding significance for formulating scientific measures of EOR in the later stage.

Key words: imbibition effect, fractures, low permeability, conglomerate reservoir, dual-porosity and dualpermeability, Urho Formation

中图分类号: 

  • TE348
[1] 唐勇, 徐洋, 李亚哲, 等.玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义.新疆石油地质, 2018, 39(1):16-22. TANG Y, XU Y, LI Y Z, et al. Sedimentation model and exploration significance of large scaled shallow retrogradation fan Delta in Mahu Sag. Xinjiang Petroleum Geology, 2018, 39(1):16-22.
[2] 张有平, 盛世锋, 高祥录. 玛湖凹陷玛2井区下乌尔禾组扇三角洲沉积及有利储层分布. 岩性油气藏, 2015, 27(5):204-210. ZHANG Y P, SHENG S F, GAO X L. Fan delta sedimentation and favorable reservoir distribution of the lower Urho Formation in Ma 2 well block of Mahu Depression. Lithologic Reservoirs, 2015, 27(5):204-210.
[3] 唐勇, 郭文建, 王霞田, 等.玛湖凹陷砾岩大油区勘探新突破及启示.新疆石油地质, 2019, 40(2):127-137. TANG Y, GUO W J, WANG X T, et al. A new breakthrough in exploration of large conglomerate oil province in Mahu Sag and its implications. Xinjiang Petroleum Geology, 2019, 40(2):127-137.
[4] 李建民, 吴宝成, 赵海燕, 等玛湖致密砾岩油藏水平井体积压裂技术适应性分析. 中国石油勘探, 2019, 24(2):250-259. LI J M, WU B C, ZHAO H Y, et al. Adaptability of horizontal well volume fracturing to tight conglomerate reservoirs in Mahu oilfield. China Petroleum Exploration, 2019, 24(2):250-259.
[5] 李想, 肖春林, 袁述武, 等. 特低渗透砾岩油藏渗流机理研究:以八区下乌尔禾组油藏为例. 新疆石油天然气, 2015, 11(1):37-41. LI X, XIAO C L, YUAN S W, et al. Research on seepage flow mechanism of extra low permeability conglomerate reservoir:Taking the district eight lower wuerhe reservoir as an example. Xinjiang Oil & Gas, 2015, 11(1):37-41.
[6] 程晓倩, 刘华勋, 熊伟, 等. 新疆低渗透砂砾岩油藏自发渗吸实验研究. 科学技术与工程, 2013, 13(26):7793-7797. CHENG X Q, LIU H X, XIONG W, et al. Experimental research of spontaneous imbibition in low-permeability glutenite reservoir. Science Technology and Engineering, 2013, 13(26):7793-7797.
[7] 吕建荣, 谭锋奇, 许长福, 等. 克拉玛依砾岩油藏储层分类特征及水驱油规律. 东北石油大学学报, 2015, 39(4):21-30. LYU J R, TAN F Q, XU C F, et al. Reservoir classification characteristics and water displaced oil laws of conglomerate reservoir in Karamay oilfield. Journal of Northeast Petroleum University, 2015, 39(4):21-30.
[8] 姚同玉, 李继山, 王建, 等.裂缝性低渗透油藏的渗吸机理及有利条件.吉林大学学报:工学版, 2009, 39(4):937-940. YAO T Y, LI J S, WANG J, et al. Mechanisms and optimal conditions of imbibition in naturally fractured low-permeability reservoir. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(4):937-940.
[9] 孟庆帮, 刘慧卿, 王敬.天然裂缝性油藏渗吸规律.断块油气田, 2014, 21(3):330-334. MENG Q B, LIU H Q, WANG J. Imbibition law of naturally fractured reservoirs. Fault-Block Oil and Gas Field, 2014, 21(3):330-334.
[10] YU L, EVJE S, KLEPPE H, et al. Spontaneous imbibition of seawater into preferentially oil-wet chalk cores-Experiments and simulations. Journal of Petroleum Science and Engineering, 2009, 66(3/4):171-179.
[11] 况晏, 司马立强, 瞿建华, 等.致密砂砾岩储层孔隙结构影响因素及定量评价:以玛湖凹陷玛131井区三叠系百口泉组为例.岩性油气藏, 2017, 29(4):91-100. KUANG Y, SIMA L Q, QU J H, et al. Influencing factors and quantitative evaluation for pore structure of tight glutenite reservoir:a case of the Triassic Baikouquan Formation in Ma 131 well field, Mahu Sag. Lithologic Reservoirs, 2017, 29(4):91-100.
[12] 李闽, 王浩, 陈猛.致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2018, 30(1):140-149. LI M, WANG H, CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:a case study of Lucaogou Formation in Jimsar Sag, NW China. Lithologic Reservoirs, 2018, 30(1):140-149.
[13] 郭公建,谷长春. 水驱油孔隙动用规律的核磁共振实验研究. 西安石油大学学报(自然科学版), 2005, 20(5):45-49. GUO G J, GU C C. Experimental study of active pore distribution during water driving by using NMR. Journal of Xi'an Shiyou University(Natural Science Edition), 2005, 20(5):45-49.
[14] 刘秀婵, 陈西泮, 刘伟, 等.致密砂岩油藏动态渗吸驱油效果影响因素及应用.岩性油气藏, 2019, 31(5):114-120. LIU X C, CHEN X P, LIU W, et al. Influencing factors of dynamic imbibition displacement effect in tight sandstone reservoir and application. Lithologic Reservoirs, 2019, 31(5):114-120.
[15] 李爱芬, 王桂娟, 何冰清, 等. 低渗裂缝地层渗吸机理及其影响因素规律研究//中国力学学会流体力学专业委员会.第九届全国流体力学学术会议论文摘要集.青岛, 2016. LI A F, WANG G J, HE B Q, et al. Study on imbibition mechanism and influencing factors of low permeability fractured formation//Chinese Society of Theoretical and Applied Mechanics. Proceedings of the 9th National Conference on Fluid Mechanics. Qingdao, 2016.
[16] 蔡建超,郁伯铭. 多孔介质自发渗吸研究进展. 力学进展, 2013,42(6):735-754. CAI J C, YU B M. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2013, 42(6):735-754.
[17] ARONOFSKY J S, MASS'E L, NATANSON S G. A model for the mechanism of oil recovery from the porous matrix due to water invasion in fractured reservoirs. TRANS. AIME, 1958, 213:17-19.
[18] MA S X, MORROW N R, ZHANG X Y. Generalized scaling of spontaneous imbibition data for strongly water-wet systems. J. PET. SCI. ENG., 1997, 18(3/4):165-178.
[19] HAMON G, VIDAL J. Scaling-up the capillary imbibition process from laboratory experiments on homogeneous and heterogeneous samples. SPE 15852, 1986.
[20] KAZEMI H, GILMAN J R, EL-SHARKAWAY A M. Analytical and numerical solution of oil recovery from fractured reservoirs with empirical transfer functions. Spere, 1992, 7(2):219-227.
[21] 孙业恒, 时付更, 王成峰, 等.低渗透砂岩油藏储集层双孔双渗模型的建立方法.石油勘探与开发, 2004, 31(4):79-82. SUN Y H, SHI F G, WANG C F, et al. Modeling of dual-porosity and dual-permeability for low-permeability sandstone reservoir. Petroleum Exploration & Development, 2004, 31(4):79-82.
[22] SARMA P. New transfer functions for simulation of naturally fractured reservoir with dual porosity models. Palo Alto:Stanford University, 2003.
[23] 刘浪. 裂缝性油藏渗吸开采数值模拟研究. 成都:西南石油大学, 2006. LIU L. Numerical simulation of imbibition in fractured reservoir. Chengdu:Southwest Petroleum University, 2006.
[24] 刘涛, 石善志, 郑子君, 等.地质工程一体化在玛湖凹陷致密砂砾岩水平井开发中的实践. 中国石油勘探, 2018, 23(2):90-103. LIU T, SHI S Z, ZHENG Z J, et al. Application of geology engineering integration for developing tight oil in glutenite reservoir by horizontal wells in Mahu Sag. China Petroleum Exploration, 2018, 23(2):90-103.
[25] 庞德新.砂砾岩储层成因差异及其对储集物性的控制效应:以玛湖凹陷玛2井区下乌尔禾组为例.岩性油气藏, 2015, 27(5):149-154. PANG D X. Sedimentary genesis of sand-conglomerate reservoir and its control effect on reservoir properties:a case study of the lower Urho Formation in Ma 2 well block of Mahu Depression. Lithologic Reservoirs, 2015, 27(5):149-154.
[26] 王剑, 靳军, 张宝真, 等.玛湖凹陷东斜坡区下乌尔禾组砂砾岩储层孔隙形成机理及优势储层成因分析. 科学技术与工程, 2015, 15(23):136-142. WANG J, JIN J, ZHANG B Z, et al. Pore formation mechanism and genesis of advantage reservoir of Permian lower Urho Formation glutenite reservoir in the Madong area, Junggar Basion. Science Technology and Engineering, 2015, 15(23):136-142.
[27] 姜华. 低渗透油藏水平井开发优化设计. 青岛:中国石油大学(华东),2013. JIANG H. Optimization design of horizontal well in low permeability reservoir. China University of Petroleum(East China), 2013.
[28] 石立华, 程时清, 常毓文, 等.延长油田水平井开发模式矿场实践.钻采工艺, 2019, 42(5):69-72. SHI L H, CHENG S Q, CHANG Y W, et al. Field practice of horizontal well development mode in Yanchang Oilfield. Drilling & Production Technology, 2019, 42(5):69-72.
[1] 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[2] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[3] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[4] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[5] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[6] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[7] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[8] 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[9] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[10] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[11] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[12] 李长海, 赵伦, 刘波, 赵文琪, 王淑琴, 李建新, 郑天宇, 李伟强. 滨里海盆地东缘北特鲁瓦油田石炭系碳酸盐岩储层裂缝网络连通性评价[J]. 岩性油气藏, 2024, 36(2): 113-123.
[13] 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.
[14] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[15] 王金铎, 曾治平, 徐冰冰, 李超, 刘德志, 范婕, 李松涛, 张增宝. 准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J]. 岩性油气藏, 2024, 36(1): 23-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .