岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 95–105.doi: 10.12108/yxyqc.20220110

• 勘探技术 • 上一篇    下一篇

川南长宁地区五峰组—龙马溪组页岩气评价新方法

温康1,2, 闫建平1,2,3, 钟光海4, 井翠5, 唐洪明2, 王敏6, 王军6, 胡钦红7, 李志鹏6   

  1. 1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500;
    2. 西南石油大学地球科学与技术学院, 成都 610500;
    3. 中国地质大学构造与油气资源教育部重点实验室, 武汉 430074;
    4. 中国石油西南油气田公司页岩气研究院, 成都 610500;
    5. 四川长宁天然气开发有限责任公司, 成都 610051;
    6. 中石化胜利油田勘探开发研究院, 山东东营 257015;
    7. 美国德克萨斯大学阿灵顿分校地球与环境科学系, 阿灵顿 76019
  • 收稿日期:2021-05-12 修回日期:2021-07-29 发布日期:2022-01-21
  • 通讯作者: 闫建平(1980—),男,博士,教授,主要从事测井地质学及非常规油气测井评价方面的教学与研究工作。Email:yanjp_tj@163.com。 E-mail:yanjp_tj@163.com
  • 作者简介:温康(1997-),男,西南石油大学在读硕士研究生,研究方向为测井地质学。地址:(610500)四川省成都市新都区西南石油大学地球科学与技术学院。Email:793416551@qq.com
  • 基金资助:
    中国石油-西南石油大学创新联合体科技合作项目“川南深层与昭通中浅层海相页岩气规模效益开发关键技术研究”(编号:2020-CX020000)、高等学校学科创新引智计划(111计划)“深层海相页岩气高效开发学科创新引智基地”(编号:D18016)和国家科技重大专项课题“济阳坳陷页岩油勘探开发目标评价”(编号:2017ZX05049-004)联合资助

New method of shale gas evaluation of Wufeng-Longmaxi Formation in Changning area, southern Sichuan Basin

WEN Kang1,2, YAN Jianping1,2,3, ZHONG Guanghai4, JING Cui5, TANG Hongming2, WANG Min6, WANG Jun6, HU Qinhong7, LI Zhipeng6   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China;
    4. Research Institute of Shale gas, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China;
    5. Sichuan Changning Natural Gas Development Company Limited, Chengdu 610051, China;
    6. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying 257015, Shandong, China;
    7. Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, TX 76019, USA
  • Received:2021-05-12 Revised:2021-07-29 Published:2022-01-21

摘要: 为了准确评价川南长宁地区五峰组—龙马溪组海相页岩气的含气量,将页岩气分成吸附气和游离气单独进行计算再求和,以等温吸附实验数据为基础,提出并构建了基于微孔充填理论和D-A(Du‐bibin-Astakhov)方程相结合的吸附气量评价模型,模型中的可变参数微孔最大吸附量V0、与吸附体系对气体的亲和力有关的常数B、与吸附体系表面非均质性相关的参数t的计算中均考虑了影响吸附气量的关键参数,如地层压力、总有机碳(TOC)含量和孔隙度等;以含气饱和度法为基础,结合吸附态甲烷对孔隙体积的影响,构建了对游离气量进行定量校正的评价模型。结果表明:新建立的吸附气与游离气含量评价模型在研究区页岩含气量评价中具有良好的应用效果,计算的含气量与实测数据相关系数超过0.90。该研究成果为页岩气资源潜力评价和“甜点”预测提供了依据。

关键词: 页岩含气量, 吸附气, 游离气, 等温吸附, 微孔充填理论, D-A方程

Abstract: In order to evaluate the gas content of marine shale of Wufeng-Longmaxi Formation in Changning area,southern Sichuan Basin,the shale gas was divided into adsorbed gas and free gas and then calculated separately. Based on isothermal adsorption experimental data,a new adsorbed gas volume evaluation model was proposed and constructed based on micropore filling theory and D-A(Dubibin-Astakhov) equation. The key parameters affecting the adsorbed gas volume, such as formation pressure,total organic carbon(TOC) content and porosity, were taken into account in the calculation of the variable parameter V0 which is the maximum micropore adsorption capacity,the constant B related to the affinity of the adsorption system for gas,and the parameter t related to the surface heterogeneity of the adsorption system. Based on the gas saturation method and combined with the effect of adsorbed methane on pore volume,an evaluation model for quantitative correction of free gas volume was established. The results show that the newly established evaluation model of adsorbed gas and free gas volume has a good application effect in the evaluation of shale gas content in the study area,and the correlation coefficient between the calculated gas content and measured data is more than 0.90. The research results provide a basis for shale gas resource potential evaluation and sweet spot prediction.

Key words: shale gas content, adsorbed gas, free gas, isothermal adsorption, micropore filling theory, D-A equation

中图分类号: 

  • TE319
[1] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景. 天然气工业, 2021, 41(1):1-14. ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China. Natural Gas Industry, 2021, 41(1):1-14.
[2] 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索. 天然气工业, 2018, 38(10):1-10. MA X H. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin. Natural Gas Industry, 2018, 38(10):1-10.
[3] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策. 油气藏评价与开发, 2019, 9(5):1-13.FANG Z X. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China. Reservoir Evaluation and Development, 2019, 9(5):1-13.
[4] 钟光海, 谢冰, 周肖. 页岩气测井评价方法研究:以四川盆地蜀南地区为例. 岩性油气藏, 2015, 27(4):96-102. ZHONG G H, XIE B, ZHOU X. Well logging evaluation methods of shale gas reservoir:A case study from Shunan area, Sichuan Basin. Lithologic Reservoirs, 2015, 27(4):96-102.
[5] 林腊梅, 张金川, 韩双彪, 等. 泥页岩储层等温吸附测试异常探讨. 油气地质与采收率, 2012, 19(6):30-32. LIN L M, ZHANG J C, HAN S B, et al. Study on abnormal curves of isothermal adsorption of shale. Petroleum Geology and Recovery Efficiency, 2012, 19(6):30-32.
[6] 颜磊, 周文, 樊靖宇, 等. 川南深层页岩气储层含气量测井计算方法. 测井技术, 2019, 43(2):149-154. YAN L, ZHOU W, FAN J Y, et al. Log evaluation method for gas content of deep shale gas reservoirs in southern Sichuan Basin. Well Logging Technology, 2019, 43(2):149-154.
[7] 沈瑞, 胡志明, 郭和坤, 等. 四川盆地长宁龙马溪组页岩赋存空间及含气规律. 岩性油气藏, 2018, 30(5):11-17. SHEN R, HU Z M, GUO H K, et al. Storage space and gas content law of Longmaxi shale in Changning area, Sichuan Basin. Lithologic Reservoirs, 2018, 30(5):11-17.
[8] 庞小婷, 陈国辉, 许晨曦, 等. 涪陵地区五峰组-龙马溪组页岩吸附-游离气定量评价及相互转化. 石油与天然气地质, 2019, 40(6):1247-1258. PANG X T, CHEN G H, XU C X, et al. Quantitative evaluation of absorbed and free gas and their mutual conversion in WufengLongmaxi shale in Fuling area. Oil & Gas Geology, 2019, 40(6):1247-1258.
[9] DUBININ M M, ASTAKHOV V A. Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 1971, 20(1):3-7.
[10] 甘辉. 长宁地区龙马溪组页岩气资源潜力分析. 成都:西南石油大学, 2015. GAN H. Shale gas resource potential analysis in Longmaxi Formation of Changning district. Chengdu:Southwest Petroleum University, 2015.
[11] 秦华, 范小军, 刘明, 等. 焦石坝地区龙马溪组页岩解吸气地球化学特征及地质意义. 石油学报, 2016, 37(7):846-854. QIN H, FAN X J, LIU M, et al. Geochemical characteristics and geological significance of desorbed shale gas in Longmaxi Formation, Jiaoshiba area. Acta Petrolei Sinica, 2016, 37(7):846854.
[12] 王适择, 李忠权, 郭明, 等. 川南长宁地区龙马溪组页岩裂缝发育特征. 科学技术与工程, 2013, 13(36):10887-10892. WANG S Z, LI Z Q, GUO M, et al. Developmental characteristics of Longmaxi Formation shaly fissure in Changning of south of Sichuan area. Science Technology and Engineering, 2013, 13(36):10887-10892.
[13] 梅庆华, 何登发, 文竹, 等. 四川盆地乐山-龙女寺古隆起地质结构及构造演化. 石油学报, 2014, 35(1):11-25. MEI Q H, HE D F, WEN Z, et al. Geologic structure and tectonic evolution of the Leshan-Longnvsi Paleo-uplift in Sichuan Basin. Acta Petrolei Sinica, 2014, 35(1):11-25.
[14] 刘树根, 秦川, 孙玮, 等. 四川盆地震旦系灯影组油气四中心耦合成藏过程. 岩石学报, 2012, 28(3):879-888. LIU S G, QIN C, SUN W, et al. The coupling formation process of four centers of hydrocarbon in Sinian Dengying Formation of Sichuan Basin. Acta Petrologica Sinica, 2012, 28(3):879-888.
[15] 刘文平, 周政, 吴娟, 等. 川南盆地长宁页岩气田五峰组-龙马溪组成藏动力学过程及其意义. 南京大学学报(自然科学), 2020, 56(3):393-404. LIU W P, ZHOU Z, WU J, et al. Hydrocarbon generation and shale gas accumulation in the Wufeng-Longmaxi formations, Changning shale-gas field, southern Sichuan Basin. Journal of Nanjing University(Natural Science), 2020, 56(3):393-404.
[16] 杨洋. 川南长宁地区下志留统龙马溪组页岩储层研究. 成都:西南石油大学, 2016. YANG Y. Study on shale reservoir of Lower Silurian Longmaxi Formation in Changning area, southern Sichuan. Chengdu:Southwest Petroleum University, 2016.
[17] 陈居凯, 朱炎铭, 崔兆帮, 等. 川南龙马溪组页岩孔隙结构综合表征及其分形特征. 岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[18] 郑珊珊, 刘洛夫, 汪洋, 等. 川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi formations shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[19] 梁洪彬, 向祖平, 肖前华, 等. 页岩气吸附模型对比分析与应用. 大庆石油地质与开发, 2017, 36(6):159-167. LIANG H B, XIANG Z P, XIAO Q H, et al. Comparative analysis and application of the shale gas absorbing model. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(6):159167.
[20] 侯晓伟, 王猛, 刘宇, 等. 页岩气超临界状态吸附模型及其地质意义. 中国矿业大学学报, 2016, 45(1):111-118. HOU X W, WANG M, LIU Y, et al. Supercritical adsorption model of shale gas and its geological significance. Journal of China University of Mining & Technology, 2016, 45(1):111-118.
[21] REXER T F T, BENHAM M J, APLIN A C, et al. Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy & Fuels, 2013, 27(6):3099-3109.
[22] WHITE C M, SMITH D H, JONES K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane Recovery:A review. Energy & Fuels, 2005, 19(3):659-724.
[23] 熊健, 刘向君, 梁利喜, 等. 页岩气超临界吸附的DubibinAstakhov改进模型. 石油学报, 2015, 36(7):849-857. XIONG J, LIU X J, LIANG L X, et al. Improved DubibinAstakhov model for shale-gas supercritical adsorption. Acta Petrolei Sinica, 2015, 36(7):849-857.
[24] POLANYI M. The potential theory of adsorption. Science, 1963, 141:1010-1013.
[25] AMANKWAH K A G, SCHWARZ J A. A modified approach for estimating pseudo-vapor pressures in the application of the Dubinin-Astakhov equation. Carbon, 1995, 33(9):1313-1319.
[26] 王瑞, 张宁生, 刘晓娟, 等. 考虑吸附和扩散的页岩视渗透率及其与温度、压力之关系. 西安石油大学学报(自然科学版), 2013, 28(2):49-53. WANG R, ZHANG N S, LIU X J, et al. Apparent permeability of shale considering the adsorption and diffusion of gas and the effects of temperature and pressure on it. Journal of Xi'an Shiyou University(Natural Science Edition), 2013, 28(2):49-53.
[27] 李武广, 杨胜来, 徐晶, 等. 考虑地层温度和压力的页岩吸附气含量计算新模型. 天然气地球科学, 2012, 23(4):791-796. LI W G, YANG S L, XU J, et al. A new model for shale adsorptive gas amount under a certain geological conditions of temperature and pressure. Natural Gas Geoscience, 2012, 23(4):791796.
[28] 于真. 四川省地表温度时空变化特征及评价模型研究. 成都:成都理工大学, 2017. YU Z. Changes of ground temperature in Sichuan and evaluation model. Chengdu:Chengdu University of Technology, 2017.
[29] 蒲泊伶, 蒋有录, 王毅, 等. 四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析. 石油学报, 2010, 31(2):225230. PU B L, JIANG Y L, WANG Y, et al. Reservoir-forming conditions and favorable exploration zones of shale gas in Lower Silurian Longmaxi Formation of Sichuan Basin. Acta Petrolei Sinica, 2010, 31(2):225-230.
[30] NIE H K, HE Z L, LIU G X, et al. Genetic mechanism of highquality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin. Natural Gas Industry B, 2021, 8(1):24-34.
[31] 钟光海, 谢冰, 周肖, 等. 四川盆地页岩气储层含气量的测井评价方法. 天然气工业, 2016, 36(8):43-51. ZHONG G H, XIE B, ZHOU X, et al. A logging evaluation method for gas content of shale gas reservoirs in the Sichuan Basin. Natural Gas Industry, 2016, 36(8):43-51.
[32] 张泽. 沁水盆地榆社区块页岩气储层含气量特征研究. 西安:西安石油大学, 2018. ZHANG Z. Research on gas content characteristics of shale gas reservoirs in Yushe area of QinShui Basin. Xi'an:Xi'an Shiyou University, 2018.
[33] 周伟. 页岩气含气量计算方法研究. 成都:成都理工大学, 2019. ZHOU W. Study on the calculation method of shale gas content. Chengdu:Chengdu University of Technology, 2019.
[34] LUCIER A M, HOFMANN R, BRYNDZIA L T. Evaluation of variable gas saturation on acoustic log data from the Haynesville Shale gas play, NW Louisiana, USA. The Leading Edge, 2011, 30(3):300-311.
[35] AMBROSE R J, HARTMAN R C, DIAZ-CAMPOS M, et al. Shale gas-in-place calculations Part I:New pore-scale considerations. SPE Journal, 2012, 17(1):219-229.
[36] 胡曦, 王兴志, 李宜真, 等. 利用测井信息计算页岩有机质丰度:以川南长宁地区龙马溪组为例. 岩性油气藏, 2016, 28(5):107-112. HU X, WANG X Z, LI Y Z, et al. Using log data to calculate the organic matter abundance in shale:A case study from Longmaxi Formation in Changning area, southern Sichuan Basin. Lithologic Reservoirs, 2016, 28(5):107-112.
[37] 闫建平, 梁强, 耿斌, 等. 湖相泥页岩地球化学参数测井计算方法及应用:以沾化凹陷渤南洼陷沙三下亚段为例. 岩性油气藏, 2017, 29(4):108-116. YAN J P, LIANG Q, GENG B, et al. Log calculation method of geochemical parameters of lacustrine shale and its application:A case of lower Es 3 in Bonan subsag, Zhanhua Sag. Lithologic Reservoirs, 2017, 29(4):108-116.
[1] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[2] 李沛, 张金川, 唐玄, 霍志鹏, 李振, 刘君兰, 李中明. 南华北盆地中牟—温县区块上古生界页岩气吸附特性[J]. 岩性油气藏, 2019, 31(3): 66-75.
[3] 余川, 周洵, 方光建, 汪生秀, 余忠樯. 地层温压条件下页岩吸附性能变化特征——以渝东北地区龙马溪组为例[J]. 岩性油气藏, 2018, 30(6): 10-17.
[4] 何彦庆, 郑丽, 闫长辉, 田园媛, 吴婷婷, 赵可乐. 页岩储层标准等温吸附曲线的建立——以鄂尔多斯盆地长7页岩储层为例[J]. 岩性油气藏, 2018, 30(3): 92-99.
[5] 魏新善, 胡爱平, 赵会涛, 康锐, 石晓英, 刘晓鹏. 致密砂岩气地质认识新进展[J]. 岩性油气藏, 2017, 29(1): 11-20.
[6] 张作清,孙建孟,龚劲松,夏志林. 页岩气储层含气量计算模型研究[J]. 岩性油气藏, 2015, 27(6): 5-14.
[7] 钟光海,谢 冰,周 肖. 页岩气测井评价方法研究[J]. 岩性油气藏, 2015, 27(4): 96-102.
[8] 李传亮,彭朝阳,朱苏阳. 煤层气其实是吸附气[J]. 岩性油气藏, 2013, 25(2): 112-115.
[9] 李传亮,朱苏阳. 页岩气其实是自由气[J]. 岩性油气藏, 2013, 25(1): 1-3.
[10] 王德龙,郭平,陈恒,付微风,汪忠德,丁洪坤. 新吸附气藏物质平衡方程推导及储量计算[J]. 岩性油气藏, 2012, 24(2): 83-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[2] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .
[3] 刘建新, 雍学善, 吴会良, 刘军迎, 张继娟, 郭旋. 苏里格气田盒8 段地震多技术储层沉积相研究[J]. 岩性油气藏, 2007, 19(2): 80 -83 .
[4] 刘全新,方光建. 利用模拟退火算法实现地震叠前反演[J]. 岩性油气藏, 2010, 22(1): 87 -92 .
[5] 王愫. 双反射偏移(DWM) 技术介绍及应用[J]. 岩性油气藏, 2008, 20(2): 78 -82 .
[6] 先伟, 吴伟航, 李小刚, 夏铭. 双侧向测井裂缝参数解释在伊朗Aran 油田的应用[J]. 岩性油气藏, 2008, 20(3): 89 -94 .
[7] 张虎权,卫平生,潘建国,孙 东,王宏斌. 碳酸盐岩地震储层学[J]. 岩性油气藏, 2010, 22(2): 14 -17 .
[8] 降栓奇,陈彦君,赵志刚,高双,李红恩,李晓红. 二连盆地潜山成藏条件及油藏类型[J]. 岩性油气藏, 2009, 21(4): 22 -27 .
[9] 李富恒,邹才能,侯连华,陶士振,王岚. 地层油气藏形成机制与分布规律研究综述[J]. 岩性油气藏, 2009, 21(4): 32 -36 .
[10] 王威,李臻,田敏,周锦程,李凝. 岩性-地层油气藏勘探方法技术研究现状及进展[J]. 岩性油气藏, 2009, 21(2): 121 -125 .