岩性油气藏 ›› 2018, Vol. 30 ›› Issue (3): 92–99.doi: 10.12108/yxyqc.20180311

• 油气地质 • 上一篇    下一篇

页岩储层标准等温吸附曲线的建立——以鄂尔多斯盆地长7页岩储层为例

何彦庆1, 郑丽2, 闫长辉1, 田园媛1, 吴婷婷1, 赵可乐1   

  1. 1. 成都理工大学 能源学院, 成都 610059;
    2. 新疆科力新技术发展股份有限公司, 新疆 克拉玛依 834000
  • 收稿日期:2017-12-05 修回日期:2018-02-27 出版日期:2018-05-21 发布日期:2018-05-21
  • 第一作者:何彦庆(1994-),男,成都理工大学在读硕士研究生,研究方向为非常规油气藏开发。地址:(610059)四川省成都市成华区二仙桥东三路1号成都理工大学能源学院。Email:heyanqingimpact@hotmail.com。
  • 基金资助:
    国家自然科学基金项目“基于多点动态监测的低黏度致密油溶解气驱机理研究”(编号:51674046)资助

Establishment of standard adsorption isotherms for shale reservoirs: a case of Chang 7 shale reservoir in Ordos Basin

HE Yanqing1, ZHENG Li2, YAN Changhui1, TIAN Yuanyuan1, WU Tingting1, ZHAO Kele1   

  1. 1. College of Energy, Chengdu University of Technology, Chengdu 610059 China;
    2. Xinjiang Keli New Technology Development Company Limited, Karamay 834000, Xinjiang, China
  • Received:2017-12-05 Revised:2018-02-27 Online:2018-05-21 Published:2018-05-21

摘要: 页岩的矿物成分复杂、孔隙结构多样,导致页岩吸附性能差异大,同一储层中不同岩样的等温吸附曲线形态变化大,有必要针对页岩建立标准等温吸附曲线。对来自鄂尔多斯盆地长7油层组的页岩储层样品进行了低温液氮等温吸附实验,将实验所得曲线进行初步标准化后按照BET理论中的常数C值取2为底的指数进行分类并标准化。再将所有样品的标准等温吸附曲线使用4种吸附层厚度方程在Matlab数值分析软件中进行参数拟合,用以验证标准等温吸附曲线。按拟合精度从小到大排列的4种吸附层厚度方程的顺序为:Carbon Black 2次方程 < Carbon Black 3次方程 < Halsey方程 < De Bore方程。最后通过参数平均得出了每一类型的页岩标准等温吸附曲线。所得页岩储层的标准等温吸附曲线代表了一系列表面性质相似的储层的吸附特征,可直接用于油藏数值模拟或油藏工程计算,简化了大量的繁琐计算过程,降低了岩样随机选择所导致的数据不确定性,且使计算结果具有较强的代表性。

Abstract: The composition of shale is complicated and the pore structure is diverse,which results in great difference in adsorption properties of shale. The adsorption isotherm curves of different rock samples in the same reservoir vary greatly. Thus,we need to establish a standard adsorption isotherm curves for shale. The adsorption isothermal experiments of shale samples from Chang 7 reservoir in Ordos Basin were carried out by low temperature liquid nitrogen method. The experimental curves were initially standardized and then classified according to the C value of the BET theory,taking the exponent of 2 as the standardized value. Then,the standard adsorption isothermal curve of all samples was used to fit the parameters of the four adsorption layer thickness equations in Matlab numerical analysis software to verify the adsorption isothermal curve. The fitting accuracy of the four adsorption layer thickness equations is:Carbon Black,square < Carbon Black,cube < Halsey < De Bore. Finally,the standard adsorption isothermal curves of each type of shale were obtained by parameter averaging. The standard of adsorption isothermal curve of shale reservoir,which stand a series of adsorption characteristics of reservoirs with similar surface properties,can be calculated directly in reservoir simulation and reservoir engineering use, reduce the data uncertainly caused by random selection of rock samples,simplify a lot of calculation process, and make the calculation result is representative.

中图分类号: 

  • TE348
[1] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 1938, 60(2):309-319.
[2] CRANSTON R W, INKLEY F A. The determination of pore structures from nitrogen adsorption isotherms. Advances in Catalysts, 1957, 9:143-154.
[3] DE BOER J H, LINSEN B G, OSINGA T H. Studies on pore systems in catalysts:Ⅵ. The universal t curve. Journal of Catalysis, 1965, 4(6):643-648.
[4] LIPPENS B C, DE BOER J H. Studies on pore systems in catalysts Ⅴ. The T method. Journal of Catalysis, 1965, 4(3):319-323.
[5] LIPPENS B C, LINSEN B G, DE BOER J H. Studies on pore systems in catalysts Ⅰ. The adsorption of nitrogen; apparatus and calculation. Journal of Catalysis, 1964, 3(1):32-37.
[6] DE BOER J H, LINSEN B G, VAN DER P T, et al. Studies on pore systems in catalysts:Ⅶ. Description of the pore dimensions of carbon blacks by the T method catalysis. Journal of Catalysis, 1965, 4(6):649-653.
[7] LECLOUX A, PIRARD J P. The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. Journal of Colloid Interface Science, 1979, 70(2):265-281.
[8] 陈诵英. 完全无模型孔分布计算法. 石油炼制与化工, 1982(12):29-35. CHEN S Y. Complete model-free hole distribution calculation method. Petrol Refining and Petrochemicals, 1982(12):29-35.
[9] 陈诵英.利用实测和标准等温线之差计算孔分布的新的简捷方法. 催化学报, 1983, 4(2):146-153. CHEN S Y. A new and simple method to calculate pore distribution using the difference between measured and standard isotherms. Chinese Journal of Catalysis, 1983, 4(2):146-153.
[10] 陈诵英.利用标准等温线分析活性炭的完全孔分布.化工学报, 1985, 36(3):373-379. CHEN S Y. Analysis of complete pore distribution of activated carbon using standard isothermal. Journal of Chemical Industry, 1985, 36(3):373-379.
[11] 吴良士, 白鸽, 袁忠信.矿物与岩石.北京:化学工业出版社, 2005:86-92. WU L S, BAI G, YUAN Z X. Minerals and rocks. Beijing:Chemical Industry Press, 2005:86-92.
[12] HALSEY G D. Physical adsorption on non-uniform surfaces. Journal of Chemical & Physical, 1948, 16(10):931-937.
[13] MAGEE R W. Evaluation of the external surface area of carbon black by nitrogen adsorption. American Chemistry Society, 1995, 68(4):590-600.
[14] CARRUTHERS J D, CUTTING P A, DAY R E. Standard data for adsorption of nitrogen at-196 degrees C on non-porous hydroxylated silica. Chemical Industry, 1968, 1(50):1772-1779.
[15] PIERCE C. The universal nitrogen isotherm. Physical & Chemical, 1968, 72(10):3673-3676.
[16] HANNA K M, OLDER I, BRUNAUER S. Pore structure analysis by oxygen adsorption T-curves and methods of analysis. Colloid Interface Science, 1973, 45(1):27-37.
[17] SHULL C G, AMER J. The determination of pore size distribution from gas adsorption data. Journal of the American Chemical Society, 1948, 70(4):1405-1410.
[18] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1981, 40(9):1361-1403.
[19] 近藤精一, 石川达雄. 吸附科学. 北京:化学工业出版社, 2005:32-96. KONDO E, ISHIKAWA T. Adsorption science. Beijing:Chemical Industry Press, 2005:32-96.
[20] 周理, 李明, 周业平.超临界甲烷在高活性炭上的吸附测量及其理论分析.中国科学:B辑化学, 2000, 31(1):49-56. ZHOU L, LI M, ZHOU Y P. Adsorption measurement and theoretical analysis of supercritical methane on high active carbon. Science in China:Series B Chemetry, 2000, 31(1):49-56.
[21] 杨华.硅镁胶的制备表征及其吸附性能研究.青岛:中国海洋大学, 2013. YANG H. Preparation and characterization of Gum Magnesium and its adsorption properties. Qingdao:Ocean University of China, 2013.
[22] 曹跃, 刘延哲, 陈义国, 等. 鄂尔多斯盆地东韩油区延长组长7-长9油气成藏条件及主控因素.岩性油气藏, 2018, 30(1):30-38. CAO Y, LIU Y Z, CHEN Y G, et al. Hydrocarbon accumulation conditions and main controlling factors of Chang 7-Chang 9 oil reservoirs of Yanchang Formation in Donghan region, Ordos Basin. Lithologic Reservoirs, 2018, 30(1):30-38.
[23] 林森虎, 汪梦诗, 袁选俊.大型坳陷湖盆定量化沉积相编图新方法——以鄂尔多斯盆地中部长7油层组为例. 岩性油气藏, 2017, 29(3):10-17. LIN S H, WANG M S, YUAN X J. A new quantitative method of sedimentary facies mapping of large lacustrine depression:a case from Chang 7 reservoir in central Ordos Basin. Lithologic Reservoirs, 2017, 29(3):10-17.
[24] 孙丽娜, 张明峰, 吴陈君, 等.油页岩生排烃模拟实验中不同液态烃产物特征.岩性油气藏, 2017, 29(6):23-31. SUN L N, ZHANG M F, WU C J, et al. Features of liquid hydrocarbon in different states in oil shale during hydrous pyrolysis. Lithologic Reservoirs, 2017, 29(6):23-31.
[25] 寇雨, 周文, 赵毅楠, 等.鄂尔多斯盆地延长组长7段陆相页岩吸附特性及控制因素.岩性油气藏, 2016, 28(6):52-57. KOU Y, ZHOU W, ZHAO Y N, et al. Adsorption characteristics, types and influencing factors of Chang 7 shale of Triassic Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2016, 28(6):52-57.
[26] 张作清, 孙建孟, 龚劲松, 等.页岩气储层含气量计算模型研究.岩性油气藏, 2015, 27(6):5-14. ZHANG Z Q, SUN J M, GONG J S, et al. Gas content calculation model of shale gas reservoir. Lithologic Reservoirs, 2015, 27(6):5-14.
[1] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[2] 李甜, 代宗仰, 李阳, 黄蕾, 宫振超, 赵晓阳, 周晓龙, 黄澜. 辽河西部凹陷雷家地区古近系沙四段湖相白云岩成因[J]. 岩性油气藏, 2022, 34(2): 75-85.
[3] 曹旭升, 韩昀, 张继卓, 罗志伟. 渗吸效应对裂缝性低渗砾岩油藏开发的影响——以玛湖乌尔禾组储层为例[J]. 岩性油气藏, 2020, 32(4): 155-162.
[4] 崔永正, 姜瑞忠, 郜益华, 乔欣, 王琼. 空间变导流能力压裂井CO2驱试井分析[J]. 岩性油气藏, 2020, 32(4): 172-180.
[5] 安杰, 唐梅荣, 曹宗熊, 王文雄, 陈文斌, 吴顺林. 超低渗透低压油藏水平井转变开发方式试验[J]. 岩性油气藏, 2019, 31(5): 134-140.
[6] 王跃鹏, 刘向君, 梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.
[7] 姜瑞忠, 张福蕾, 崔永正, 潘红, 张旭, 张春光, 沈泽阳. 考虑应力敏感和复杂运移的页岩气藏压力动态分析[J]. 岩性油气藏, 2019, 31(4): 149-156.
[8] 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164.
[9] 姜瑞忠, 沈泽阳, 崔永正, 张福蕾, 张春光, 原建伟. 双重介质低渗油藏斜井压力动态特征分析[J]. 岩性油气藏, 2018, 30(6): 131-137.
[10] 殷代印, 项俊辉, 王东琪. 大庆油田长垣外围特低渗透扶杨油层综合分类[J]. 岩性油气藏, 2018, 30(1): 150-154.
[11] 李友全, 韩秀虹, 阎燕, 张德志, 周志为, 孟凡坤. 低渗透油藏CO2吞吐压力响应曲线分析[J]. 岩性油气藏, 2017, 29(6): 119-127.
[12] 李小龙, 许华儒, 刘晓强, 王涛, 张凯文, 曲占庆. 径向井压裂裂缝形态及热采产能研究[J]. 岩性油气藏, 2017, 29(6): 154-160.
[13] 邓学峰. 致密低渗油藏压裂水平井合理生产压差优化设计[J]. 岩性油气藏, 2017, 29(1): 135-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 耿燕飞,张春生,韩校锋,杨大超. 安岳—合川地区低阻气层形成机理研究[J]. 岩性油气藏, 2011, 23(3): 70 -74 .