岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 180190.doi: 10.12108/yxyqc.20250617
詹盛云1, 童建祥2, 王振东2, 白玉婷1, 王泰超1
ZHAN Shengyun1, TONG Jianxiang2, WANG Zhendong2, BAI Yuting1, WANG Taichao1
摘要: 渤海油田A区块底水稠油油藏斜对双水平井SAGD生产规律较复杂,剩余油饱和度和含水率均较高。通过物理模拟实验方法对正对、斜对双水平井SAGD开发过程中温度场变化特征和生产规律进行了分析,并结合数值模拟方法,探讨了注采压差对SAGD生产效果的影响,明确了斜对双水平井SAGD的合理注采压差范围。研究结果表明:①正对双水平井SAGD蒸汽腔向模型两侧扩展,蒸汽腔两侧的斜面泄油能力均衡,而斜对双水平井SAGD蒸汽腔扩展速度及斜面泄油能力都不均衡,蒸汽腔波及面积更小,采出程度更低;双水平井SAGD的生产过程可分为产油速度上升阶段、稳定生产阶段和下降阶段,其中稳定生产阶段蒸汽腔处于横向扩展阶段,以重力泄油为主。②渤海油田A区块的SAGD生产井存在10 m避水距离,数值模拟结果显示,当底水能量小于10倍,底水对水平井SAGD的生产效果基本无影响;双水平井SAGD稳定生产阶段,随着注采压差的增大,注汽量和产液量逐渐升高,产油量先增加后逐渐降低,累积油汽比先升高后降低,sub-cool值和汽液界面高度逐渐降低;生产井未发生汽窜时,正对双水平井产油量大于斜对双水平井;正对、斜对双水平井SAGD合理注采压差分别为20~30 kPa和30~40 kPa。
中图分类号:
| [1] JIA Chengzao. Oil sand resource status and reserve evaluationmethod[M]. Beijing: Petroleum Industry Press, 2007. 贾承造. 油砂资源状况与储量评估方法[M]. 北京: 石油工业出版社, 2007. [2] XU Zhengxiao, LI Songyan, LI Binfei, et al. A review of development methods and EOR technologies for carbonate reservoirs[J]. Petroleum Science, 2020, 17(4): 990-1013. [3] DONG Xiaohu, LIU Huiqing, CHEN Zhangxin. Hybrid enhancedoil recovery processes for heavy oil reservoirs[M]. Amsterdam: Elsevier Science, 2021. [4] CHEN Xiangyu, LI Jianyuan, CHEN Yu. Heat transfer of steamcavity edge in SAGD process considering reservoir physicalproperty changes[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 379-384. 陈翔宇, 李建元, 陈宇. 考虑储层物性变化的SAGD开发蒸汽腔前缘传热研究[J]. 油气藏评价与开发, 2023, 13(3): 379-384. [5] YU Yang, LIU Shangqi, LIU Yang. Review of research on recovery process and mechanism of steam-assisted gravity drainage[J]. Science Technology and Engineering. 2021, 21(12): 4744-4751. 余洋, 刘尚奇, 刘洋. 蒸汽辅助重力泄油开发过程及机理研究综述[J]. 科学技术与工程, 2021, 21(12): 4744-4751. [6] DING Chao, WANG Pan, QIN Yadong, et al. SAGD production performance prediction model based on unsteady heattransfer[J]. Lithologic Reservoirs, 2023, 35(1): 160-168. 丁超, 王攀, 秦亚东, 等. 基于非稳态热传导的SAGD开发指标预测模型[J]. 岩性油气藏, 2023, 35(1): 160-168. [7] QIN Wenchong. Analysis of steam channeling causes and countermeasures in dual-level well SAGD[J]. China New Technology and New Products, 2023, 28(10): 42-45. 秦文冲. 双水平井SAGD汽窜原因分析及对策研究[J]. 中国新技术新产品, 2023, 28(10): 42-45. [8] LIU Hao, CHENG Linsong, XIONG Hao, et al. The effects ofinjector-producer pressure difference on dual-well SAGD recovery[J]. Petroleum Science Bulletin, 2016, 1(3): 363-375. 刘昊, 程林松, 熊浩, 等. 注采压差对双水平井SAGD开发的影响[J]. 石油科学通报, 2016, 1(3): 363-375. [9] SUN Qiji. Study on three dimensional seepage mechanism andproductivity mode for SAGD vertical well and horizontal wellcombination of heavy oil production[D]. Daqing: Northeast Petroleum University, 2015. 孙启冀. 直井水平井组合SAGD稠油开发三维渗流机理及产能研究[D]. 大庆: 东北石油大学, 2015. [10] CHEN Guangwei, WANG Qingtao, WANG Xinwei, et al. Applicability analysis of single horizontal well SAGD in heavy oilreservoir and optimization of injection-production scheme[J]. Journal of China University of Petroleum(Edition of NaturalScience), 2021, 45(6): 136-143. 陈广卫, 王庆涛, 王新伟, 等. 稠油油藏单水平井SAGD技术适用性分析及注采方案优化[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 136-143. [11] SUN Pengxiao, LIU Yingxian. Development status and thermaldevelopment difficulties and strategy of Bohai heavy oil reservoirs[J]. China Offshore Oil and Gas, 2023, 35(2): 85-92. 孙鹏霄, 刘英宪. 渤海稠油油藏开发现状及热采开发难点与对策[J]. 中国海上油气, 2023, 35(2): 85-92. [12] QIN Zhengshan, HE Yongming, DING Yangyang, et al. Waterinvasion performance and main controlling factors for edge-watergas reservoirs[J]. Lithologic Reservoirs, 2024, 36(4): 178-188. 秦正山, 何勇明, 丁洋洋, 等. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188. [13] ZHANG Jilei, LUO Xianbo, ZHANG Yunlai, et al. Improvingwater injection efficiency of transfer injection well in heavy oilbottom water reservoir[J]. Lithologic Reservoirs, 2019, 31(4): 141-148. 张吉磊, 罗宪波, 张运来, 等. 提高稠油底水油藏转注井注水效率研究[J]. 岩性油气藏, 2019, 31(4): 141-148. [14] CHEN Jiajie. Study on expansion law of steam chamber for thedevelopment of cyclic steam stimulation to SAGD in heavy oilreservoir with edge and bottom water[D]. Beijing: China University of Petroleum(Beijing), 2023. 陈嘉杰. 边底水稠油油藏蒸汽吞吐转SAGD开发蒸汽腔扩展规律研究[D]. 北京: 中国石油大学(北京), 2023. [15] GAO Jiawei. Study on mechanism of CO2-assisted water control for seam stimulation horizontal well with bottom water [D]. Beijing: China University of Petroleum(Beijing), 2020. 高嘉伟. 底水稠油油藏蒸汽吞吐水平井CO2辅助控水增产机理研究[D]. 北京: 中国石油大学(北京), 2020. [16] LI Tingli, ZHANG Mo, WU Tingting, et al. Research on development strategies of different types of heavy oil reservoirs inthe Bohai Sea[J]. Natural Gas and Oil, 2023, 41(6): 110-116. 李廷礼, 张墨, 吴婷婷, 等. 渤海不同类型稠油油藏开发策略研究[J]. 天然气与石油, 2023, 41(6): 110-116. [17] ZHANG Yunlai, CHEN Jianbo, ZHOU Haiyan, et al. Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir[J]. Lithologic Reservoirs, 2020, 32(6): 146-153. 张运来, 陈建波, 周海燕, 等. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153. [18] YUAN Xiao. Research on EOR mechanism and optimizationof SAGD with different well types in thin-layer oil sands reservoir[D]. Changzhou: Changzhou University, 2022. 袁潇. 薄层油砂不同井型SAGD提高采收率机理与优化研究[D]. 常州: 常州大学, 2022. [19] LIU Hao. Heat and mass transfer model for expanding solventSAGD process and its application[D]. Beijing: China University of Petroleum(Beijing), 2019. 刘昊. 溶剂辅助SAGD地层传质传热模型及应用[D]. 北京: 中国石油大学(北京), 2019. [20] ZHOU Jiuning, FAN Zifei, BAO Yu, et al. Numerical simulation study on SAGD development law of multi-lateral horizontal oil sand wells and evaluation of field development results [J]. China Petroleum Exploration, 2023, 28(3): 145-159. 周久宁, 范子菲, 包宇, 等. 油砂多分支水平井SAGD开发规律数值模拟研究及现场开发效果评价[J]. 中国石油勘探, 2023, 28(3): 145-159. [21] DU Binghui, LIN Botao, ZHANG Runxue, et al. Technology tostimulate Xinjiang Fengcheng super-heavy oil reservoir containing muddy interlayers by drilling multilateral wells[J]. Xinjiang Oil & Gas, 2022, 18(4): 44-51. 杜炳辉, 林伯韬, 张润雪, 等. 新疆风城超稠油储层多分支井夹层改造技术[J]. 新疆石油天然气, 2022, 18(4): 44-51. [22] ZHOU Zhijun, ZHANG Qi, YI Xi, et al. Optimization of lateralmorphology of SAGD fishbone multilateral wells and recoverychange law[J]. Special Oil & Gas Reservoirs, 2024, 31(1): 57-65. 周志军, 张祺, 衣犀, 等. 鱼骨型分支井SAGD分支形态优化及采出程度变化规律[J]. 特种油气藏, 2024, 31(1): 57-65. [23] LIU Pengfei, WANG Kunjian, LI Jin, et al. Research on application of herringbone horizontal branch well in Bohai Oilfield [J]. China Offshore Oil and Gas, 2021, 33(3): 147-152. 刘鹏飞, 王昆剑, 李进, 等. 鱼骨型水平分支井在渤海油田的应用研究[J]. 中国海上油气, 2021, 33(3): 147-152. [24] DU Xulin, DAI Zong, XIN Jing, et al. Three-dimensional waterflooding physical simulation experiment of horizontal well inheavy oil reservoir with strong bottom water[J]. Lithologic Reservoirs, 2020, 32(2): 141-148. 杜旭林, 戴宗, 辛晶, 等. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148. [25] DONG Xiaohu, WANG Jian, LIU Huiqing, et al. SAGD scaledphysical simulation experiment for oilsands reservoirs withhigh water-bearing layer[J]. Acta Petrolei Sinica, 2022, 43(5): 658-667. 东晓虎, 王剑, 刘慧卿, 等. 高含水层油砂SAGD相似物理模拟实验[J]. 石油学报, 2022, 43(5): 658-667. [26] WEI Shaolei. Flow mechanism and production practice for theintegral process of SAGD using horizontal well pairs[D]. Beijing: China University of Petroleum(Beijing), 2015. 魏绍蕾. 双水平井组合SAGD开发全过程流动机理及应用[D]. 北京: 中国石油大学(北京), 2015. [27] HUANG Shijun, XIONG Hao, YE Heng, et al. SAGD productivity prediction model considering the injector-producer pressure difference[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(6): 101-108. 黄世军, 熊浩, 叶恒, 等. 考虑注采压差下SAGD产能预测模型[J]. 西南石油大学学报(自然科学版), 2017, 39(6): 101-108. [28] YANG Yang. The characterization method of liquid level during steam assisted gravity drainage process with dual horizontal wells in oil sands[D]. Beijing: China University of Petroleum(Beijing), 2016. 杨阳. 油砂双水平井SAGD开发蒸汽腔汽液界面描述方法及应用[D]. 北京: 中国石油大学(北京), 2016. |
| [1] | 江山, 唐永建, 焦霞蓉, 李文亮, 黄成, 王泽. 塔里木盆地顺北油田4号断裂带断控体凝析气藏剩余气分布规律[J]. 岩性油气藏, 2025, 37(4): 84-94. |
| [2] | 杨旭, 白鸣生, 龚汉渤, 李皋, 陶祖文. 川西新场地区三叠系须二段构造裂缝特征及定量预测[J]. 岩性油气藏, 2025, 37(3): 73-83. |
| [3] | 赵艾琳, 赖强, 樊睿琦, 吴煜宇, 陈杰, 严双栏, 张家伟, 廖广志. 基性火山岩核磁共振响应机理及孔隙结构评价方法——以四川盆地西南部二叠系峨眉山玄武岩组为例[J]. 岩性油气藏, 2025, 37(3): 153-164. |
| [4] | 张庆龙, 毛元元, 冯建松, 袁学生, 周微, 朱福金, 轩玲玲. 裂缝-孔隙型碳酸盐岩油藏加密井井位部署新方法——以渤海湾盆地黄骅坳陷唐海油田寒武系油藏为例[J]. 岩性油气藏, 2025, 37(3): 165-175. |
| [5] | 徐有杰, 任宗孝, 向祖平, 樊晓辉, 于梦男. 非均质储层致密气藏压裂井复杂缝多井干扰数值试井模型[J]. 岩性油气藏, 2025, 37(3): 194-200. |
| [6] | 何岩, 许维娜, 党思思, 牟蕾, 林少玲, 雷章树. 准噶尔盆地陆梁地区侏罗系西山窑组钙质夹层成因及勘探意义[J]. 岩性油气藏, 2025, 37(1): 90-101. |
| [7] | 桂诗琦, 罗群, 贺小标, 王千军, 王仕琛, 汪亮. 准噶尔盆地车排子凸起石炭系油气成藏主控因素及成藏模式[J]. 岩性油气藏, 2025, 37(1): 126-136. |
| [8] | 陈肖, 缪云, 李伟, 谢明英, 施浩, 王伟峰. 海上边水驱砂岩油田合理油水井数比计算方法[J]. 岩性油气藏, 2025, 37(1): 194-200. |
| [9] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
| [10] | 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177. |
| [11] | 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136. |
| [12] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
| [13] | 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22. |
| [14] | 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184. |
| [15] | 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168. |
|
||