岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 180–190.doi: 10.12108/yxyqc.20250617

• 石油工程与油气田开发 • 上一篇    下一篇

底水油藏不同注采井模式SAGD开发特征及合理注采压差

詹盛云1, 童建祥2, 王振东2, 白玉婷1, 王泰超1   

  1. 1. 中海油研究总院有限责任公司 海洋石油高效开发国家重点实验室, 北京 100028;
    2. 中国石油大学 (北京)石油工程学院, 北京 102249
  • 收稿日期:2024-10-22 修回日期:2025-01-12 出版日期:2025-11-01 发布日期:2025-11-07
  • 第一作者:詹盛云(1975—),男,硕士,高级工程师,主要从事油气田开发方案研究工作。地址:(100028)北京市朝阳区太阳宫南街6号院2号楼14层。Email:zhanshy@cnooc.com.cn。
  • 通信作者: 童建祥(2000—),男,中国石油大学(北京)在读硕士研究生,主要研究方向为稠油热采。Email:tongjianxiang266@163.com。

Development characteristics and reasonable injection-production pressuredifference of SAGD under different injection-production well patternsin bottom water reservoirs

ZHAN Shengyun1, TONG Jianxiang2, WANG Zhendong2, BAI Yuting1, WANG Taichao1   

  1. 1. State Key Laboratory of Offshore Oil Efficient Development, CNOOC Research Institute Co., Ltd., Beijing 100028, China;
    2. School of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2024-10-22 Revised:2025-01-12 Online:2025-11-01 Published:2025-11-07

摘要: 渤海油田A区块底水稠油油藏斜对双水平井SAGD生产规律较复杂,剩余油饱和度和含水率均较高。通过物理模拟实验方法对正对、斜对双水平井SAGD开发过程中温度场变化特征和生产规律进行了分析,并结合数值模拟方法,探讨了注采压差对SAGD生产效果的影响,明确了斜对双水平井SAGD的合理注采压差范围。研究结果表明:①正对双水平井SAGD蒸汽腔向模型两侧扩展,蒸汽腔两侧的斜面泄油能力均衡,而斜对双水平井SAGD蒸汽腔扩展速度及斜面泄油能力都不均衡,蒸汽腔波及面积更小,采出程度更低;双水平井SAGD的生产过程可分为产油速度上升阶段、稳定生产阶段和下降阶段,其中稳定生产阶段蒸汽腔处于横向扩展阶段,以重力泄油为主。②渤海油田A区块的SAGD生产井存在10 m避水距离,数值模拟结果显示,当底水能量小于10倍,底水对水平井SAGD的生产效果基本无影响;双水平井SAGD稳定生产阶段,随着注采压差的增大,注汽量和产液量逐渐升高,产油量先增加后逐渐降低,累积油汽比先升高后降低,sub-cool值和汽液界面高度逐渐降低;生产井未发生汽窜时,正对双水平井产油量大于斜对双水平井;正对、斜对双水平井SAGD合理注采压差分别为20~30 kPa和30~40 kPa。

关键词: 稠油, 底水油藏, 斜对双水平井, SAGD开发, 注采压差, 物理模拟, 数值模拟, 渤海油田

Abstract: SAGD production law of inclined dual horizontal well in the bottom water heavy oil reservoir of block A in Bohai Oilfield is complex, with high remaining oil saturation and high water cut.Through the physical simulation experiment, the characteristics of temperature field change and production laws of the forward and in clined horizontal wells during the SAGD development process were analyzed. Combined with the numerical simulation method, the influence of injection-production pressure difference on SAGD production efficiency is discussed, and the reasonable injection-production pressure difference range of horizontal well SAGD is clarified. The results show that : (1) SAGD steam chamber of the forward dual horizontal well extends to both sides of the model, and the oil drainage capacity of the inclined plane on both sides of the steam chamber is balanced.However, the expansion speed of the SAGD steam chamber and the oil drainage capacity of the inclined plane ofthe inclined dual horizontal well are unbalanced, resulting in a smaller steam chamber coverage area and lower recovery degree. The production process of dual horizontal well SAGD can be divided into three stages: oil production rate rising stage, stable production stage and falling stage. In the stable production stage, the steam chamber is in the lateral expansion stage, which is dominated by gravity drainage.(2) The SAGD production well in block A of Bohai Oilfield has a water avoidance distance of 10 m. Numerical simulation results show that: when the bottom water energy is less than 10 times and the bottom water has no effect on the production efficiency of horizontal well SAGD. In the stable production stage of dual horizontal well SAGD, with the increase of injection-production pressure difference, the steam injection and liquid production gradually increase, the oil production first increases and then gradually decreases, the cumulative oil-steam ratio first increases and then decreases, and both the sub-cool value and the height of steam-liquid interface decrease gradually. When there is no steam channeling in the production well, the oil production of the forward horizontal well is greater than that of the inclined horizontal well. The reasonable injection-production pressure difference of SAGD in forward and inclined horizontal wells is 20-30 kPa and 30-40 kPa, respectively.

Key words: heavy oil, bottom water reservoir, inclined dual horizontal well, SAGD development, injection-production pressure difference, physical simulation, numerical simulation, Bohai Oilfield

中图分类号: 

  • TE345
[1] JIA Chengzao. Oil sand resource status and reserve evaluationmethod[M]. Beijing: Petroleum Industry Press, 2007. 贾承造. 油砂资源状况与储量评估方法[M]. 北京: 石油工业出版社, 2007.
[2] XU Zhengxiao, LI Songyan, LI Binfei, et al. A review of development methods and EOR technologies for carbonate reservoirs[J]. Petroleum Science, 2020, 17(4): 990-1013.
[3] DONG Xiaohu, LIU Huiqing, CHEN Zhangxin. Hybrid enhancedoil recovery processes for heavy oil reservoirs[M]. Amsterdam: Elsevier Science, 2021.
[4] CHEN Xiangyu, LI Jianyuan, CHEN Yu. Heat transfer of steamcavity edge in SAGD process considering reservoir physicalproperty changes[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 379-384. 陈翔宇, 李建元, 陈宇. 考虑储层物性变化的SAGD开发蒸汽腔前缘传热研究[J]. 油气藏评价与开发, 2023, 13(3): 379-384.
[5] YU Yang, LIU Shangqi, LIU Yang. Review of research on recovery process and mechanism of steam-assisted gravity drainage[J]. Science Technology and Engineering. 2021, 21(12): 4744-4751. 余洋, 刘尚奇, 刘洋. 蒸汽辅助重力泄油开发过程及机理研究综述[J]. 科学技术与工程, 2021, 21(12): 4744-4751.
[6] DING Chao, WANG Pan, QIN Yadong, et al. SAGD production performance prediction model based on unsteady heattransfer[J]. Lithologic Reservoirs, 2023, 35(1): 160-168. 丁超, 王攀, 秦亚东, 等. 基于非稳态热传导的SAGD开发指标预测模型[J]. 岩性油气藏, 2023, 35(1): 160-168.
[7] QIN Wenchong. Analysis of steam channeling causes and countermeasures in dual-level well SAGD[J]. China New Technology and New Products, 2023, 28(10): 42-45. 秦文冲. 双水平井SAGD汽窜原因分析及对策研究[J]. 中国新技术新产品, 2023, 28(10): 42-45.
[8] LIU Hao, CHENG Linsong, XIONG Hao, et al. The effects ofinjector-producer pressure difference on dual-well SAGD recovery[J]. Petroleum Science Bulletin, 2016, 1(3): 363-375. 刘昊, 程林松, 熊浩, 等. 注采压差对双水平井SAGD开发的影响[J]. 石油科学通报, 2016, 1(3): 363-375.
[9] SUN Qiji. Study on three dimensional seepage mechanism andproductivity mode for SAGD vertical well and horizontal wellcombination of heavy oil production[D]. Daqing: Northeast Petroleum University, 2015. 孙启冀. 直井水平井组合SAGD稠油开发三维渗流机理及产能研究[D]. 大庆: 东北石油大学, 2015.
[10] CHEN Guangwei, WANG Qingtao, WANG Xinwei, et al. Applicability analysis of single horizontal well SAGD in heavy oilreservoir and optimization of injection-production scheme[J]. Journal of China University of Petroleum(Edition of NaturalScience), 2021, 45(6): 136-143. 陈广卫, 王庆涛, 王新伟, 等. 稠油油藏单水平井SAGD技术适用性分析及注采方案优化[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 136-143.
[11] SUN Pengxiao, LIU Yingxian. Development status and thermaldevelopment difficulties and strategy of Bohai heavy oil reservoirs[J]. China Offshore Oil and Gas, 2023, 35(2): 85-92. 孙鹏霄, 刘英宪. 渤海稠油油藏开发现状及热采开发难点与对策[J]. 中国海上油气, 2023, 35(2): 85-92.
[12] QIN Zhengshan, HE Yongming, DING Yangyang, et al. Waterinvasion performance and main controlling factors for edge-watergas reservoirs[J]. Lithologic Reservoirs, 2024, 36(4): 178-188. 秦正山, 何勇明, 丁洋洋, 等. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188.
[13] ZHANG Jilei, LUO Xianbo, ZHANG Yunlai, et al. Improvingwater injection efficiency of transfer injection well in heavy oilbottom water reservoir[J]. Lithologic Reservoirs, 2019, 31(4): 141-148. 张吉磊, 罗宪波, 张运来, 等. 提高稠油底水油藏转注井注水效率研究[J]. 岩性油气藏, 2019, 31(4): 141-148.
[14] CHEN Jiajie. Study on expansion law of steam chamber for thedevelopment of cyclic steam stimulation to SAGD in heavy oilreservoir with edge and bottom water[D]. Beijing: China University of Petroleum(Beijing), 2023. 陈嘉杰. 边底水稠油油藏蒸汽吞吐转SAGD开发蒸汽腔扩展规律研究[D]. 北京: 中国石油大学(北京), 2023.
[15] GAO Jiawei. Study on mechanism of CO2-assisted water control for seam stimulation horizontal well with bottom water [D]. Beijing: China University of Petroleum(Beijing), 2020. 高嘉伟. 底水稠油油藏蒸汽吞吐水平井CO2辅助控水增产机理研究[D]. 北京: 中国石油大学(北京), 2020.
[16] LI Tingli, ZHANG Mo, WU Tingting, et al. Research on development strategies of different types of heavy oil reservoirs inthe Bohai Sea[J]. Natural Gas and Oil, 2023, 41(6): 110-116. 李廷礼, 张墨, 吴婷婷, 等. 渤海不同类型稠油油藏开发策略研究[J]. 天然气与石油, 2023, 41(6): 110-116.
[17] ZHANG Yunlai, CHEN Jianbo, ZHOU Haiyan, et al. Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir[J]. Lithologic Reservoirs, 2020, 32(6): 146-153. 张运来, 陈建波, 周海燕, 等. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153.
[18] YUAN Xiao. Research on EOR mechanism and optimizationof SAGD with different well types in thin-layer oil sands reservoir[D]. Changzhou: Changzhou University, 2022. 袁潇. 薄层油砂不同井型SAGD提高采收率机理与优化研究[D]. 常州: 常州大学, 2022.
[19] LIU Hao. Heat and mass transfer model for expanding solventSAGD process and its application[D]. Beijing: China University of Petroleum(Beijing), 2019. 刘昊. 溶剂辅助SAGD地层传质传热模型及应用[D]. 北京: 中国石油大学(北京), 2019.
[20] ZHOU Jiuning, FAN Zifei, BAO Yu, et al. Numerical simulation study on SAGD development law of multi-lateral horizontal oil sand wells and evaluation of field development results [J]. China Petroleum Exploration, 2023, 28(3): 145-159. 周久宁, 范子菲, 包宇, 等. 油砂多分支水平井SAGD开发规律数值模拟研究及现场开发效果评价[J]. 中国石油勘探, 2023, 28(3): 145-159.
[21] DU Binghui, LIN Botao, ZHANG Runxue, et al. Technology tostimulate Xinjiang Fengcheng super-heavy oil reservoir containing muddy interlayers by drilling multilateral wells[J]. Xinjiang Oil & Gas, 2022, 18(4): 44-51. 杜炳辉, 林伯韬, 张润雪, 等. 新疆风城超稠油储层多分支井夹层改造技术[J]. 新疆石油天然气, 2022, 18(4): 44-51.
[22] ZHOU Zhijun, ZHANG Qi, YI Xi, et al. Optimization of lateralmorphology of SAGD fishbone multilateral wells and recoverychange law[J]. Special Oil & Gas Reservoirs, 2024, 31(1): 57-65. 周志军, 张祺, 衣犀, 等. 鱼骨型分支井SAGD分支形态优化及采出程度变化规律[J]. 特种油气藏, 2024, 31(1): 57-65.
[23] LIU Pengfei, WANG Kunjian, LI Jin, et al. Research on application of herringbone horizontal branch well in Bohai Oilfield [J]. China Offshore Oil and Gas, 2021, 33(3): 147-152. 刘鹏飞, 王昆剑, 李进, 等. 鱼骨型水平分支井在渤海油田的应用研究[J]. 中国海上油气, 2021, 33(3): 147-152.
[24] DU Xulin, DAI Zong, XIN Jing, et al. Three-dimensional waterflooding physical simulation experiment of horizontal well inheavy oil reservoir with strong bottom water[J]. Lithologic Reservoirs, 2020, 32(2): 141-148. 杜旭林, 戴宗, 辛晶, 等. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[25] DONG Xiaohu, WANG Jian, LIU Huiqing, et al. SAGD scaledphysical simulation experiment for oilsands reservoirs withhigh water-bearing layer[J]. Acta Petrolei Sinica, 2022, 43(5): 658-667. 东晓虎, 王剑, 刘慧卿, 等. 高含水层油砂SAGD相似物理模拟实验[J]. 石油学报, 2022, 43(5): 658-667.
[26] WEI Shaolei. Flow mechanism and production practice for theintegral process of SAGD using horizontal well pairs[D]. Beijing: China University of Petroleum(Beijing), 2015. 魏绍蕾. 双水平井组合SAGD开发全过程流动机理及应用[D]. 北京: 中国石油大学(北京), 2015.
[27] HUANG Shijun, XIONG Hao, YE Heng, et al. SAGD productivity prediction model considering the injector-producer pressure difference[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(6): 101-108. 黄世军, 熊浩, 叶恒, 等. 考虑注采压差下SAGD产能预测模型[J]. 西南石油大学学报(自然科学版), 2017, 39(6): 101-108.
[28] YANG Yang. The characterization method of liquid level during steam assisted gravity drainage process with dual horizontal wells in oil sands[D]. Beijing: China University of Petroleum(Beijing), 2016. 杨阳. 油砂双水平井SAGD开发蒸汽腔汽液界面描述方法及应用[D]. 北京: 中国石油大学(北京), 2016.
[1] 江山, 唐永建, 焦霞蓉, 李文亮, 黄成, 王泽. 塔里木盆地顺北油田4号断裂带断控体凝析气藏剩余气分布规律[J]. 岩性油气藏, 2025, 37(4): 84-94.
[2] 杨旭, 白鸣生, 龚汉渤, 李皋, 陶祖文. 川西新场地区三叠系须二段构造裂缝特征及定量预测[J]. 岩性油气藏, 2025, 37(3): 73-83.
[3] 赵艾琳, 赖强, 樊睿琦, 吴煜宇, 陈杰, 严双栏, 张家伟, 廖广志. 基性火山岩核磁共振响应机理及孔隙结构评价方法——以四川盆地西南部二叠系峨眉山玄武岩组为例[J]. 岩性油气藏, 2025, 37(3): 153-164.
[4] 张庆龙, 毛元元, 冯建松, 袁学生, 周微, 朱福金, 轩玲玲. 裂缝-孔隙型碳酸盐岩油藏加密井井位部署新方法——以渤海湾盆地黄骅坳陷唐海油田寒武系油藏为例[J]. 岩性油气藏, 2025, 37(3): 165-175.
[5] 徐有杰, 任宗孝, 向祖平, 樊晓辉, 于梦男. 非均质储层致密气藏压裂井复杂缝多井干扰数值试井模型[J]. 岩性油气藏, 2025, 37(3): 194-200.
[6] 何岩, 许维娜, 党思思, 牟蕾, 林少玲, 雷章树. 准噶尔盆地陆梁地区侏罗系西山窑组钙质夹层成因及勘探意义[J]. 岩性油气藏, 2025, 37(1): 90-101.
[7] 桂诗琦, 罗群, 贺小标, 王千军, 王仕琛, 汪亮. 准噶尔盆地车排子凸起石炭系油气成藏主控因素及成藏模式[J]. 岩性油气藏, 2025, 37(1): 126-136.
[8] 陈肖, 缪云, 李伟, 谢明英, 施浩, 王伟峰. 海上边水驱砂岩油田合理油水井数比计算方法[J]. 岩性油气藏, 2025, 37(1): 194-200.
[9] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[10] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[11] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[12] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[13] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[14] 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.
[15] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!