岩性油气藏 ›› 2026, Vol. 38 ›› Issue (1): 13–25.doi: 10.12108/yxyqc.20260102

• 地质勘探 • 上一篇    下一篇

准噶尔盆地永进地区侏罗系齐古组天然裂缝发育特征及主控因素

孟阳1(), 曹小朋2, 赵浩2,3(), 杨明林2, 李志鹏4, 田振磊2, 乌洪翠2, 蒋越2   

  1. 1 中国石化胜利油田分公司山东 东营 257000
    2 中国石化胜利油田分公司 勘探开发研究院山东 东营 257015
    3 中国石化胜利石油管理局 博士后科研工作站山东 东营 257015
    4 中国石化新疆新春石油开发有限责任公司山东 东营 257000
  • 收稿日期:2025-06-07 修回日期:2025-08-18 出版日期:2026-01-01 发布日期:2026-01-23
  • 第一作者:孟阳(1970—),男,硕士,教授级高级工程师,主要从事油气田开发研究与管理工作。地址:(257000)东营市东营区济南路125号。Email:mengyang.slyt@sinopec.com
  • 通信作者: 赵浩
  • 基金资助:
    中国石化科技攻关项目“永进油田地质甜点评价及开发工程技术研究”(P23138);及胜利油田博士后科研课题“永进齐古组有效储层形成机制及主控因素”(YKB2312)

Development characteristics and main controlling factors of natural fractures of Jurassic Qigu Formation in Yongjin area, Junggar Basin

MENG Yang1(), CAO Xiaopeng2, ZHAO Hao2,3(), YANG Minglin2, LI Zhipeng4, TIAN Zhenlei2, WU Hongcui2, JIANG Yue2   

  1. 1 Shengli Oilfield CompanySinopecDongying 257000, Shandong, China
    2 Exploration and Development Research InstituteShengli Oilfield Company, SinopecDongying 257015, Shandong, China
    3 Postdoctoral Work Station of Shengli OilfieldSinopecDongying 257015, Shandong, China
    4 Xinjiang Xinchun Petroleum Development Co.Ltd., SinopecDongying 257000, Shandong, China
  • Received:2025-06-07 Revised:2025-08-18 Online:2026-01-01 Published:2026-01-23
  • Contact: ZHAO Hao E-mail:mengyang.slyt@sinopec.com;haozhao1993@foxmail.com

摘要:

天然裂缝的发育程度是影响准噶尔盆地永进地区侏罗系齐古组单井产能的关键因素。结合野外露头、岩心、薄片、测井和试验等资料,对齐古组致密砂岩天然裂缝成因类型、发育特征和主控因素进行了详细研究,并预测了其有利发育区。研究结果表明:①准噶尔盆地永进地区侏罗系齐古组致密砂岩储层天然裂缝成因类型多样,主要包括成岩裂缝、少量构造裂缝和异常超压裂缝,其中成岩裂缝以层理缝为主,发育少量粒缘缝和粒内缝。天然裂缝是深层优质储集层形成的重要因素之一。②研究区齐古组裂缝的发育主要受沉积作用、构造应力和超压的控制,沉积微相通过控制岩性、矿物成分、沉积构造等因素来控制裂缝发育程度,分流砂坝中上部的中细砂岩为裂缝发育的有利场所;喜山期近南北向构造挤压应力是研究区构造裂缝和层理缝开启的重要动力,断层1 km范围内裂缝较发育;异常超压对超压缝和层理缝的开启以及裂缝的保存具有重要作用,研究区北部异常超压发育程度高,储层裂缝较发育。③研究区齐古组有效天然裂缝主要发育在压力系数大于1.6、断层北部的层状分流砂坝区。

关键词: 致密砂岩, 天然裂缝, 成岩缝, 构造缝, 异常超压缝, 齐古组, 侏罗系, 永进地区, 准噶尔盆地

Abstract:

The development degree of natural fractures is a critical factor affecting single-well productivity of Jurassic Qigu Formation in Yongjin area, Junggar Basin. Based on data of field outcrops, cores, thin sections, well logging and experiment, genesis types, development characteristics, and main controlling factors of natural fractures in tight sandstone of Qigu Formation were studied, and favorable development areas were predicted. The results show that:(1) Genesis types of natural fractures in tight sandstone reservoirs of Jurassic Qigu Formation in Yongjin area, Junggar Basin are various, mainly including diagenetic fractures, a small number of structural fractures and abnormal overpressure fractures. The diagenetic fractures are mainly bedding fractures, and a small number of marginal and intragranular fractures are developed. Natural fractures are one of the important factors in the formation of deep high-quality reservoirs. (2) The development of fractures in Qigu Formation in the study area is primarily controlled by sedimentation, tectonic stress, and overpressure. Sedimentary microfacies control the degree of fracture development by controlling factors such as lithology, mineral composition, and sedimentary structure. The medium-fine grained sandstone in the middle to upper parts of the diversion sand dam is a favorable location for fracture development. The near north-south structural compression stress during Himalayan tectonic period acts as a key driving force for the initiation and propagation of structural fractures and bedding fractures, and fractures are more developed within 1 km of the fault. Abnormal overpressure exerts a critical influence on the formation of overpressure fractures and bedding fractures, as well as the preservation of fractures. In the northern part of the study area, abnormal overpressure is highly developed, reservoir fractures are relatively developed. (3) The effective natural fractures of Qigu Formation in the study area primarily develop in the layered distributary sand dam in the northern part of the fault, where the pressure coefficient exceeds 1.6.

Key words: tight sandstone, natural fracture, diagenetic fracture, structural fracture, abnormal overpressure fracture, Qigu Formation, Jurassic, Yongjin area, Junggar Basin

中图分类号: 

  • TE122

图1

准噶尔盆地永进地区侏罗系齐古组沉积相图(a)及岩性地层综合柱状图(b)"

图2

准噶尔盆地永进地区侏罗系齐古组砂岩类型"

图3

准噶尔盆地永进地区侏罗系齐古组致密砂岩裂缝宏观发育特征 (a) 准噶尔盆地南缘水道砂体露头;(b) 层理缝缝面充满油,裂缝密度为55条/m,Y1井,5 878.50 m; (c) 岩心沿层理缝破裂成片状,裂缝密度大于80 条/m,YJ15井,5 778.10 m;(d) 层理缝缝面含油,YJ303井,5 737.50 m;(e) 构造剪切缝,裂缝平直,钙质充填,YJ301-X1井,5 765.30 m;(f) 构造张裂缝,裂缝弯曲,未充填,YJ3-X13井,6 225.80 m; (g) 岩心上超压成因层理缝断续发育,裂缝密度为35 条/m,Y301井,5 543.45 m;(h) 超压缝,弯曲不连续,切穿沥青脉,YJX308井,6 341.30 m;(i) 超压缝,弯曲不连续,切穿沥青脉,YJX308井,6 339.00 m。"

图4

准噶尔盆地永进地区侏罗系齐古组致密砂岩裂缝微观发育特征 (a)—(b) 铸体薄片下层理缝具有一定延伸,绕过颗粒,YJ15井,5 777.80 m;(c) 荧光薄片下层理缝内含蓝色轻质油,YJ15井,5 777.80 m;(d) 荧光薄片下粒内缝和粒缘缝充填蓝色轻质油,YJ15井,5 777.70 m;(e) 扫描电镜下微裂缝,开度小;(f) 铸体薄片下切粒缝切穿方解石、石英,Y301井,5 549.26 m; (g) 激光共聚焦薄片下切粒缝和粒缘缝,YJ15井,5 777.70 m; (h) 铸体薄片下超压缝发育在颗粒内部,呈放射状,Y301井,5 541.93 m;(i) 铸体薄片下超压缝发育在颗粒内部,呈放射状,Y301井,5 545.56 m。"

图5

准噶尔盆地永进地区侏罗系齐古组致密砂岩裂缝发育段物性特征"

图6

准噶尔盆地永进地区侏罗系齐古组致密砂岩不同围压下裂缝开度监测测试"

图7

准噶尔盆地永进地区侏罗系齐古组不同沉积微相的裂缝密度及厚度"

图8

准噶尔盆地永进地区侏罗系齐古组不同岩性的裂缝密度"

图9

准噶尔盆地永进地区侏罗系齐古组微裂缝发育段矿物组成对比"

图10

准噶尔盆地永进地区侏罗系齐古组断裂系统及井壁崩落方位玫瑰花图"

图11

准噶尔盆地永进地区侏罗系齐古组典型地震剖面解释"

图12

准噶尔盆地永进地区侏罗系齐古组构造缝密度与距断层距离相关性"

图13

准噶尔盆地永进地区侏罗系齐古组超压特征"

图14

准噶尔盆地永进地区侏罗系齐古组裂缝发育区预测"

[1] 邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6):979-1007.
ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China’s unconventional oil & gas exploration and development and theo-retical technologies[J]. Acta Geologica Sinica, 2015, 89(6):979-1007.
[2] 丁文龙, 王兴华, 胡秋嘉, 等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7):737-750.
doi: 10.11867/j.issn.1001-8166.2015.07.0737
DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7):737‑750.
[3] ZENG Lianbo, SU Hui, TANG Xiaomei, et al. Fractured tight sandstone oil and gas reservoirs:A new play type in the Dongpu depression,Bohai Bay Basin,China[J]. AAPG Bulletin, 2013, 97(3):363-377.
doi: 10.1306/09121212057
[4] 李新景, 胡素云, 程克明. 北美裂缝性页岩气勘探开发的启示[J]. 石油勘探与开发, 2007, 34(4):392-400.
LI Xinjing, HU Suyun, CHENG Keming. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration and Development, 2007, 34(4):392-400.
[5] ZENG Lianbo, GONG Lei, ZHANG Yunzhao, et al. A review of the genesis,evolution,and prediction of natural fractures in deep tight sandstones of China[J]. AAPG Bulletin, 2023, 107(10):1687-1721.
doi: 10.1306/07052322120
[6] 曾联波, 巩磊, 宿晓岑, 等. 深层—超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1):1-14.
ZENG Lianbo, GONG Lei, SU Xiaocen, et al. Natural fractures in deep to ultra-deep tight reservoirs:Distribution and development[J]. Oil & Gas Geology, 2024, 45(1):1-14.
[7] ZENG Lianbo, TANG Xiaomei, WANG Tiecheng, et al. The influence of fracture cements in tight Paleogene saline lacustrine carbonate reservoirs,western Qaidam Basin,northwest China[J]. AAPG Bulletin, 2012, 96(11):2003-2017.
doi: 10.1306/04181211090
[8] SANDERSON D J, NIXON C W. Topology,connectivity and percolation in fracture networks[J]. Journal of Structural Geo-logy, 2018, 115:167-177.
[9] 梁晓伟, 韩永林, 王海红, 等. 鄂尔多斯盆地姬塬地区上三叠统延长组裂缝特征及其地质意义[J]. 岩性油气藏, 2009, 21(2):49-53.
LIANG Xiaowei, HAN Yonglin, WANG Haihong, et al. Fracture characteristics and geological significance of Upper Triassic Yanchang Formation in Jiyuan area,Ordos Basin[J]. Lithologic Reservoirs, 2009, 21(2):49-53.
[10] 巩磊, 程宇琪, 高帅, 等. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素[J]. 地球科学, 2023, 48(7):2475-2488.
GONG Lei, CHENG Yuqi, GAO Shuai, et al. Fracture connectivity characterization and its controlling factors in Lower Jurassic tight sandstone reservoirs of eastern Kuqa Foreland Basin[J]. Earth Science, 2023, 48(7):2475-2488.
[11] 曾联波, 漆家福, 王永秀. 低渗透储层构造裂缝的成因类型及其形成地质条件[J]. 石油学报, 2007, 28(4):52-56.
doi: 10.7623/syxb200704010
ZENG Lianbo, QI Jiafu, WANG Yongxiu. Origin type of tectonic fractures and geological conditions in low-permeability reservoirs[J]. Acta Petrolei Sinica, 2007, 28(4):52-56.
doi: 10.7623/syxb200704010
[12] 曾联波, 高春宇, 漆家福, 等. 鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J]. 中国科学 D 辑:地球科学, 2008, 38(增刊1):41-47.
ZENG Lianbo, GAO Chunyu, QI Jiafu, et al. Fracture distribution and its effect on seepage in the ultra low-permeability sandstone reservoirs in Longdong area,Ordos Basin[J]. Science in China Series D:Earth Sciences, 2008, 38(Suppl 1):41-47.
[13] 王树华. 准噶尔盆地永进地区隐蔽油气藏识别与预测[D]. 青岛: 中国海洋大学, 2009.
WANG Shuhua. Identification and prediction for the subtle oil reservoir developed at Yongjin area in Junggar Basin[D]. Qingdao: Ocean University of China, 2009.
[14] 王金铎, 曾治平, 宫亚军, 等. 深部超压储层发育机制及控制因素:以准噶尔盆地永进油田为例[J]. 油气地质与采收率, 2020, 27(3):13-19.
WANG Jinduo, ZENG Zhiping, GONG Yajun, et al. Development mechanism and controlling factors of deep overpressured reservoir:A case study of Yongjin Oilfield in Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3):13-19.
[15] 贺振建, 刘宝军, 王朴. 准噶尔盆地永进地区侏罗系层理缝成因及其对储层的影响[J]. 油气地质与采收率, 2011, 18(1):15-17.
HE Zhenjian, LIU Baojun, WANG Pu. Genesis of bedding fractures and its influences on reservoirs in Jurassic,Yongjin area,Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(1):15-17.
[16] 刘浩杰, 盖姗姗, 于文政, 等. 准噶尔盆地永进油田超深层致密砂岩裂缝测井识别[J]. 测井技术, 2022, 46 (5):592-598.
LIU Haojie, GAI Shanshan, YU Wenzheng, et al. Fracture identification in super-deeply buried tight sandstone reservoirs in Yongjin Oilfield,Junggar Basin,China[J]. Well Logging Techno-logy, 2022, 46(5):592-598.
[17] 胡鑫, 朱筱敏, 金绪铃, 等. 准噶尔盆地永进地区侏罗系齐古组浅水辫状河三角洲沉积特征[J]. 岩性油气藏, 2025, 37(2):115-126.
doi: 10.12108/yxyqc.20250211
HU Xin, ZHU Xiaomin, JIN Xuling, et al. Sedimentary characteristics of the shallow-water braided river delta of Jurassic Qigu Formation in Yongjin area,Junggar Basin[J]. Lithologic Reservoirs, 2025, 37(2):115-126.
doi: 10.12108/yxyqc.20250211
[18] 胡海燕, 李平平, 王国建. 准噶尔永进地区深层次生孔隙带发育机理[J]. 地质科技情报, 2008, 27(3):21-25.
HU Haiyan, LI Pingping, WANG Guojian. Mechanism of secon-dary porosity development of Xishanyao Formation(J2x) in Yongjin Block,Junggar Basin[J]. Geological Science and Techno-logy Information, 2008, 27(3):21-25.
[19] 朱美衡, 李茂榕, 朱凤云, 等. 永进地区西山窑组成岩作用及储层影响因素[J]. 西南石油大学学报(自然科学版), 2011, 33(1):31-36.
doi: 10.3863/j.issn.1674-5086.2011.01.006
ZHU Meiheng, LI Maorong, ZHU Fengyun, et al. Sandstone diagenesis and the influence factors on reservoir of Xishanyao Formation in Yongjin area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(1):31-36.
[20] 刘浩杰, 张昌民, 盖姗姗, 等. 准噶尔盆地永进油田侏罗系超深层致密砂岩储层成岩相识别及分布预测[J]. 油气地质与采收率, 2024, 31(1):13-22
LIU Haojie, ZHANG Changmin, GAI Shanshan, et al. Diagenetic facies identification and distribution prediction of Jurassic ultra-deep tight sandstone reservoirs in Yongjin Oilfield,Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(1):13-22.
[21] 何登发, 张磊, 吴松涛, 等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质, 2018, 39(5):845-861.
HE Dengfa, ZHANG Lei, WU Songtao, et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geo-logy, 2018, 39(5):845-861.
[22] 李平平, 邹华耀, 郝芳. 准噶尔盆地腹部侏罗系顶部风化壳的发育机制及其油气成藏效应[J]. 沉积学报, 2006, 24(6):889-896.
LI Pingping, ZOU Huayao, HAO Fang. Formation mechanism and effect on petroleum accumulation of the weathering crust,top of Jurassic,in the hinterland of Junggar Basin[J]. Acta Sedi-mentologica Sinica, 2006, 24(6):889-896.
[23] 吕文雅, 曾联波, 周思宾, 等. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素:以红河油田长8储层为例[J]. 天然气地球科学, 2020, 31(1):37-46.
doi: 10.11764/j.issn.1672-1926.2019.08.006
LYU Wenya, ZENG Lianbo, ZHOU Sibin, et al. Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin:Case study of the eighth member of the Yanchang Formation in Honghe Oilfield[J]. Na-tural Gas Geoscience, 2020, 31(1):37-46.
[24] 罗群, 魏浩元, 刘冬冬, 等. 层理缝在致密油成藏富集中的意义、研究进展及其趋势[J]. 石油实验地质, 2017, 39(1):1-7
LUO Qun, WEI Haoyuan, LIU Dongdong, et al. Research signi-ficance,advances and trends on the role of bedding fracture in tight oil accumulation[J]. Petroleum Geology & Experiment, 2017, 39(1):1-7.
[25] 鞠玮, 尤源, 冯胜斌, 等. 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因[J]. 石油与天然气地质, 2020, 41(3):596-605.
JU Wei, YOU Yuan, FENG Shengbin, et al. Characteristics and genesis of bedding-parallel fractures in tight sandstone reservoirs of Chang 7 oil layer,Ordos Basin[J]. Oil & Gas Geo-logy, 2020, 41(3):596-605.
[26] 毛哲, 曾联波, 刘国平, 等. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性[J]. 石油与天然气地质, 2020, 41 (6):1212-1221
MAO Zhe, ZENG Lianbo, LIU Guoping, et al. Characterization and effectiveness of natural fractures in deep tight sandstones at the south margin of the Junggar Basin,northwestern China[J]. Oil & Gas Geology, 2020, 41(6):1212-1221.
[27] 于雷, 陈建文, 李元, 等. 姬塬油田堡子湾南长4+5储层裂缝特征及其影响因素分析[J]. 岩性油气藏, 2011, 23(6):69-72.
YU Lei, CHEN Jianwen, LI Yuan, et al. Characteristics and influencing factors of fractures of Chang 4+5 reservoir in southern Puziwan area,Jiyuan Oilfield[J]. Lithologic Reservoirs, 2011, 23(6):69-72.
[28] 曾联波, 吕文雅, 徐翔, 等. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报, 2022, 43(2):180-191.
doi: 10.7623/syxb202202002
ZENG Lianbo, LYU Wenya, XU Xiang, et al. Development characteristics,formation mechanism and hydrocarbon significance of bedding fractures in typical tight sandstone and shale[J]. Acta Petrolei Sinica, 2022, 43(2):180-191.
doi: 10.7623/syxb202202002
[29] 司学强, 彭博, 庞志超, 等. 储集层多尺度裂缝特征及控制因素:以准噶尔盆地南缘侏罗系—白垩系为例[J]. 中国矿业大学学报, 2022, 51(4):731-741.
SI Xueqiang, PENG Bo, PANG Zhichao, et al. Characteristics and controlling factors of multi-scale fractures in reservoir:A Jurassic-Cretaceous case from the southern margin of Junggar Basin[J]. Journal of China University of Mining & Technology, 2022, 51(4):731-741.
[30] NELSON R A. Geologic analysis of naturally fractured reservoirs[M]. Gulf Professional Publishing, 1985.
[31] 王瑞飞, 孙卫. 鄂尔多斯盆地姬塬油田上三叠统延长组超低渗透砂岩储层微裂缝研究[J]. 地质论评, 2009, 55(3):444-448.
WANG Ruifei, SUN Wei. A study on micro cracks in super-low permeability sandstone reservoir of the Upper Triassic Yanchang Formation in the Ordos Basin[J]. Geological Review, 2009, 55(3):444-448.
[32] 蒋有录, 李明阳, 王良军, 等. 川东北巴中—通南巴地区须家河组致密砂岩储层裂缝发育特征及控制因素[J]. 地质学报, 2020, 94(5):1525-1537.
JIANG Youlu, LI Mingyang, WANG Liangjun, et al. Characteri-stics and controlling factors of tight sandstone reservoir fractures of the Xujiahe Formation in the Bazhong-Tongnanba area,Northeast Sichuan[J]. Acta Geologica Sinica, 2020, 94(5):1525-1537.
[33] 赵向原, 曾联波, 祖克威, 等. 致密储层脆性特征及对天然裂缝的控制作用:以鄂尔多斯盆地陇东地区长7致密储层为例[J]. 石油与天然气地质, 2016, 37(1):62-71.
ZHAO Xiangyuan, ZENG Lianbo, ZU Kewei, et al. Brittleness characteristics and its control on natural fractures in tight reservoirs:A case study from Chang7 tight reservoir in Longdong area of the Ordos Basin[J]. Oil & Gas Geology, 2016, 37(1):62-71.
[34] LAI Jin, LIU Bingchang, LI Hongbin, et al. Bedding parallel fractures in fine-grained sedimentary rocks:Recognition,formation mechanisms,and prediction using well log[J]. Petroleum Science, 2022, 19(2):554-569.
doi: 10.1016/j.petsci.2021.10.017
[35] LI Zilong, FAN Changyu, SUN Bo, et al. Characteristics,logging identification and major controlling factors of bedding-parallel fractures in tight sandstones[J]. Geoenergy Science and Engineering, 2023, 228:211956.
doi: 10.1016/j.geoen.2023.211956
[36] 卫欢, 单长安, 朱松柏, 等. 库车坳陷克深地区白垩系巴什基奇克组致密砂岩裂缝发育特征及地质意义[J]. 岩性油气藏, 2025, 37(1):149-160.
doi: 10.12108/yxyqc.20250113
WEI Huan, SHAN Changan, ZHU Songbai, et al. Fracture deve-lopment characteristics and geological significance of tight sand-stone of Cretaceous Bashijiqike Formation in Keshen area,Kuqa Depression[J]. Lithologic Reservoirs, 2025, 37(1):149-160.
doi: 10.12108/yxyqc.20250113
[37] 吕文雅, 曾联波, 刘静, 等. 致密低渗透储层裂缝研究进展[J]. 地质科技情报, 2016, 35(4):74-83.
LYU Wenya, ZENG Lianbo, LIU Jing, et al. Fractures research progress in low permeability tight reservoirs[J]. Geological Science and Technology Information, 2016, 35(4):74-83.
[38] 杨旭, 白鸣生, 龚汉渤, 等. 川西新场地区三叠系须二段构造裂缝特征及定量预测[J]. 岩性油气藏, 2025, 37(3):73-83.
doi: 10.12108/yxyqc.20250307
YANG Xu, BAI Mingsheng, GONG Hanbo, et al. Characteristics and quantitative prediction of structural fractures in the second member of Triassic Xujiahe Formation in Xinchang area,western Sichuan Basin[J]. Lithologic Reservoirs, 2025, 37(3):73-83.
doi: 10.12108/yxyqc.20250307
[39] 徐思慧, 赵军, 赵新建, 等. 库车山前克拉苏构造带白垩系亚格列木组致密储层裂缝有效性评价[J]. 岩性油气藏, 2025, 37(5):155-165.
doi: 10.12108/yxyqc.20250514
XU Sihui, ZHAO Jun, ZHAO Xinjian, et al. Fracture effectiveness evaluation of tight reservoir of Cretaceous Yageliemu Formation in Kelasu structural belt,Kuqa piedmont[J]. Lithologic Reservoirs, 2025, 37(5):155-165.
doi: 10.12108/yxyqc.20250514
[40] ROUCHET J D. Stress fields,a key to oil migration[J]. AAPG Bulletin, 1981, 65(1):74-85.
[41] 吴志均, 唐红君, 安凤山. 川西新场致密砂岩气藏层理缝成因探讨[J]. 石油勘探与开发, 2003, 30(2):109-111.
WU Zhijun, TANG Hongjun, AN Fengshan. Causes of bedding fractures of tight sand gas-reservoir in Xinchang,West Sichuan region[J]. Petroleum Exploration and Development, 2003, 30(2):109-111.
[42] 韩宏伟, 刘震, 马昕箬, 等. 基于颗粒应力的深层超压预测方法研究:以准噶尔盆地腹部地区为例[J]. 现代地质, 2022, 36(4):1074-1086.
HAN Hongwei, LIU Zhen, MA Xinruo, et al. Distribution prediction of high overpressure in Jurassic Moxizhuang-Yongjin area,central Junggar Basin[J]. Geoscience, 2022, 36(4):1074-1086.
[43] 谭绍泉, 曾治平, 宫亚军, 等. 准噶尔盆地腹部超压控制烃、储演化与油气充注过程[J]. 断块油气田, 2014, 21(3):287-291.
TAN Shaoquan, ZENG Zhiping, GONG Yajun, et al. Control of abnormal overpressure on hydrocarbon-reservoir evolution and hydrocarbon filling process in central of Junggar Basin[J]. Fault-Block Oil & Gas Field, 2014, 21(3):287-291.
[44] 章惠, 关达, 向雪梅, 等. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1):133-139.
ZHANG Hui, GUAN Da, XIANG Xuemei, et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area,northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1):133-139.
doi: 10.3969/j.issn.1673-8926.2018.01.013
[1] 陈旋, 徐雄飞, 张华, 苟红光, 张亦婷, 尤帆, 程祎, 孙玉峰. 准噶尔盆地东部石炭系火山岩储层特征及有利区预测[J]. 岩性油气藏, 2025, 37(6): 13-27.
[2] 邱争科, 侯文锋, 黄焕, 高如奇, 周林, 张媛媚, 田进山, 李昊. 准噶尔盆地克-百断裂带六-七区石炭系火山机构特征及成藏模式[J]. 岩性油气藏, 2025, 37(6): 48-58.
[3] 江梦雅, 蒋中发, 刘龙松, 王江涛, 陈海龙, 王学勇, 刘海磊. 准噶尔盆地达巴松凸起三叠系白碱滩组油气地球化学特征及来源[J]. 岩性油气藏, 2025, 37(6): 71-87.
[4] 苏帅, 屈红军, 尹虎, 张磊岗, 杨晓锋. 致密砂岩储层孔喉结构分形特征及其对储层物性的影响——以鄂尔多斯盆地富县地区三叠系长8段为例[J]. 岩性油气藏, 2025, 37(6): 88-98.
[5] 缪志伟, 李世凯, 张文军, 肖伟, 刘明, 于童. “断缝体”致密砂岩复杂网状裂缝地震预测技术——以四川盆地北部三叠系须家河组为例[J]. 岩性油气藏, 2025, 37(6): 140-150.
[6] 刘冠伯, 陈世加, 李世宏, 邹阳, 李勇. 玛湖凹陷玛中构造带二叠系风城组烃源岩生气潜力及成藏条件[J]. 岩性油气藏, 2025, 37(5): 83-96.
[7] 叶慧, 朱峰, 王贵重, 石万忠, 康晓宁, 董国宁, 娜孜依曼, 王任. 准噶尔盆地二叠纪—侏罗纪古地貌恢复及其油气地质意义[J]. 岩性油气藏, 2025, 37(5): 122-132.
[8] 田继先, 石正灏, 李剑, 沙威, 蒋峥文, 杨磊, 鱼雪, 蒲永霞. 柴达木盆地侏罗系煤岩气成藏条件与勘探潜力[J]. 岩性油气藏, 2025, 37(4): 17-25.
[9] 李振明, 贾存善, 王斌, 宋振响, 邱岐, 王继远, 徐陈杰, 崔钰瑶. 准噶尔盆地东部石钱滩凹陷石炭系石钱滩组烃源岩特征及资源潜力[J]. 岩性油气藏, 2025, 37(4): 115-126.
[10] 肖文华, 杨军, 严宝年, 王建国, 李少勇, 马淇琳, 李宗霖, 薛欢召. 鄂尔多斯盆地环庆地区三叠系长8致密砂岩储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(3): 23-32.
[11] 尹照普, 朱峰, 周志尧, 王丽丽, 刘晓晔, 娜孜伊曼, 汪钰婷, 黄大瑞. 准噶尔盆地莫南斜坡侏罗系西山窑组油气成藏条件及富集主控因素[J]. 岩性油气藏, 2025, 37(3): 33-46.
[12] 邓高山, 董雪梅, 余海涛, 张洁, 岳喜伟, 任军民, 姜涛. 准噶尔盆地沙湾凹陷三叠系百口泉组油气成藏条件及勘探潜力[J]. 岩性油气藏, 2025, 37(3): 59-72.
[13] 张兆辉, 张皎生, 刘俊刚, 邹建栋, 张建伍, 廖建波, 李智勇, 赵雯雯. 鄂尔多斯盆地陇东地区三叠系长81亚段岩石相测井识别及勘探意义[J]. 岩性油气藏, 2025, 37(3): 95-107.
[14] 何小龙, 张兵, 徐川, 肖斌, 田云英, 李琢, 何一帆. 窄河道砂体中钙质夹层特征及其对储层质量的影响——以川西北梓潼地区侏罗系沙一段为例[J]. 岩性油气藏, 2025, 37(3): 129-139.
[15] 李想, 付磊, 魏璞, 李俊飞, 徐港, 曹倩倩, 钟杨, 王振鹏. 沉积古地貌恢复及古地貌对沉积体系的控制作用——以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏, 2025, 37(2): 38-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!