岩性油气藏 ›› 2026, Vol. 38 ›› Issue (1): 78–88.doi: 10.12108/yxyqc.20260107

• 地质勘探 • 上一篇    下一篇

浅水三角洲前缘薄砂岩储层地震预测方法——以川西坳陷侏罗系蓬莱镇组二段为例

田文忠1(), 乔林1, 袁剑1, 李兴文1, 向雷1, 王长城2(), 芦刚2, 卢喜和2   

  1. 1 中国石化西南油气分公司 采气一厂四川 德阳 618000
    2 成都理工大学 能源学院成都 610059
  • 收稿日期:2025-07-10 修回日期:2025-08-29 出版日期:2026-01-01 发布日期:2026-01-23
  • 第一作者:田文忠(1979—),男,硕士,高级工程师,主要从事石油地质方面的研究工作。地址:(618000)四川省德阳市泰山北路三段399号。Email:tianwenzhong1979@163.com
  • 通信作者: 王长城
  • 基金资助:
    四川省自然科学基金重点项目“四川盆地致密砂岩气储层地震响应机理及地震沉积学表征方法研究”(2024NSFSC0008)

Seismic prediction method for thin sandstone reservoirs in shallow water delta front: A case study of the second member of Jurassic Penglaizhen Formation in Western Sichuan Depression

TIAN Wenzhong1(), QIAO Lin1, YUAN Jian1, LI Xingwen1, XIANG Lei1, WANG Changcheng2(), LU Gang2, LU Xihe2   

  1. 1 No. 1 Gas Production PlantSouthwest Oil & Gas Company, SinopecDeyang 618000, Sichuan, China
    2 College of EnergyChengdu University of TechnologyChengdu 610059, China
  • Received:2025-07-10 Revised:2025-08-29 Online:2026-01-01 Published:2026-01-23
  • Contact: WANG Changcheng E-mail:tianwenzhong1979@163.com;wcc-126@163.com

摘要:

结合地震、测井解释资料,建立了“多尺度地震沉积学分析-测井约束波阻抗反演-砂体厚度验证”三位一体的薄砂岩储层表征技术体系;并通过地震属性分析、分频RGB融合、波形聚类分析,刻画了川西坳陷侏罗系蓬莱镇组二段沉积微相及河道砂体的平面展布特征。研究结果表明:①川西坳陷侏罗系蓬莱镇组二段储层主要为水下分流河道砂体,测井响应特征为“低伽马箱形”,地震响应特征为“一个强波峰及与之对应的强波谷反射”,等时地层格架的建立和井-震一致的等时对比可提高地层解释精度。②研究区蓬莱镇组二段沉积微相主要为水下分流河道及分流河道间湾,JP33-1小层为水下分流河道沉积,发育北东—南西向、东—西向 2 条河道,其中,北东—南西向河道发育较宽且厚度较大,为下一步勘探开发的重点区域。③研究区蓬莱镇组二段水下分流河道砂体具有“中—低阻抗”的地球物理响应特征,基于“多尺度地震沉积学分析-测井约束波阻抗反演-砂体厚度验证”一体的薄砂岩储层表征技术体系预测砂体厚度准确性较高,反演预测厚度与测井解释厚度相关性达 0.886 5,主河道砂体厚度大,为10~20 m,分流河道砂体厚度小,为 5~10 m。

关键词: 地震沉积学, 浅水三角洲, 薄砂岩储层, 等时地层格架, RGB融合, 波阻抗反演, 地震预测, 蓬莱镇组, 侏罗系, 川西坳陷

Abstract:

By integrating seismic and logging interpretation data, a three-in-one characterization technology system for thin sandstone reservoir of “multi-scale seismic sedimentology analysis-logging constrained wave impe-dance inversion-sand body thickness verification” was established. And through seismic attribute analysis, frequency division RGB fusion, and waveform clustering analysis, the sedimentary microfacies and distribution of channel sand bodies of the second member of Jurassic Penglaizhen Formation in Western Sichuan Depression were cha-racterized. The results show that:(1) The reservoir of the second member of Jurassic Penglaizhen Formation in Western Sichuan Depression is mainly composed of underwater distributary channel sand bodies, with logging response feature of “low gamma box curve”, and seismic response feature of “a strong peak and corresponding strong valley reflection”. The establishment of an isochronous stratigraphic framework and isochronous comparisons of well-seismic consistency can improve the accuracy of stratigraphic interpretation. (2) The sedimentary microfacies of the second member of Penglaizhen Formation in the study area are mainly underwater distributary channels and distributary channel bays. JP33-1 sublayer is compopsed of underwater distributary channel deposits, with two channels developed: a northeast-southwest trending one and an east-west trending one. And the northeast-southwest trending channel is wider in development and greater in thickness, making it a key area for further exploration and development. (3) The underwater distributary channel sand bodies of the second member of Penglaizhen Formation in the study area exhibit the geophysical response characteristic of “medium-low impe-dance”.The integrated characterization technology system for thin sandstone reservoir of “multi-scale seismic sedimentology analysis-logging constrained wave impedance inversion-sand body thickness verification”can improve the accuracy of predicting sand body thickness, with correlation coefficient of 0.886 5 between inversion prediction thickness and logging interpretation thickness. The main channel sand body thickness is large, ranging from 10 to 20 m, and the distributary channel sand body thickness is small, ranging from 5 to 10 m.

Key words: seismic sedimentology, shallow water delta, thin sandstone reservoir, isochronous stratigraphic frame-work, RGB fusion, wave impedance inversion, seismic prediction, Penglaizhen Formation, Jurassic, Western Sichuan Depression

中图分类号: 

  • TE121.3

图1

川西坳陷构造位置(a)及侏罗系蓬莱镇组地层综合柱状图(b)(据文献[9]修改)"

图2

川西坳陷侏罗系蓬莱镇组S井岩性综合柱状图"

图3

川西坳陷侏罗系蓬莱镇组二段井-震标定(a)、地震剖面(b)及连井剖面对比(c)"

图4

川西坳陷侏罗系蓬莱镇组二段地层切片(a)、频谱分析(b)及地震属性平面图(c)"

图5

川西坳陷侏罗系蓬莱镇组二段JP33-1小层平面波峰属性(a)及波谷属性图(b)"

图6

川西坳陷侏罗系蓬莱镇组二段JP33-1小层30 Hz (a)、45 Hz (b)、60 Hz (c)分频剖面及RGB融合图(d—e)"

图7

川西坳陷侏罗系蓬莱镇组二段JP33-1小层30 Hz (a)、45 Hz(b)、60 Hz(c)分频波峰振幅属性图"

图8

川西坳陷侏罗系蓬莱镇组二段JP33-1小层波形聚类(a)、沉积微相展布(b)及连井相对比(c)"

图9

基于地震沉积学-测井约束波阻抗反演-砂体厚度验证的薄砂岩储层表征技术体系"

图10

川西坳陷侏罗系蓬莱镇组二段JP33-1小层波阻抗反演(a)、砂体厚度预测(b)及波阻抗反演-砂体厚度相关性(c)"

[1] 李宏涛, 马立元, 史云清, 等. 基于井-震结合的水下分流河道砂岩储层展布分析与评价:以什邡气藏JP35砂组为例[J]. 岩性油气藏, 2020, 32(2):78-89.
doi: 10.12108/yxyqc.20200208
LI Hongtao, MA Liyuan, SHI Yunqing, et al. Distribution and evaluation of underwater distributary channel sandstone reservoir based on well-seismic combination:A case study of JP35sand group in Shifang gas reservoir[J]. Lithologic Reservoirs, 2020, 32(2):78-89.
doi: 10.12108/yxyqc.20200208
[2] 邓浩阳, 司马立强, 吴玟, 等. 致密砂岩储层孔隙结构分形研究与渗透率计算:以川西坳陷蓬莱镇组、沙溪庙组储层为例[J]. 岩性油气藏, 2018, 30(6):76-82.
doi: 10.12108/yxyqc.20180609
DENG Haoyang, SIMA Liqiang, WU Wen, et al. Fractal cha-racteristics of pore structure and permeability calculation for tight sandstone reservoirs:A case of Penglaizhen Formation and Shaximiao Formation in Western Sichuan Depression[J]. Lithologic Reservoirs, 2018, 30(6):76-82.
doi: 10.12108/yxyqc.20180609
[3] 胡向阳, 李宏涛, 史云清, 等. 川西坳陷斜坡带蓬莱镇组三段沉积特征与储层分布:以什邡地区JP23砂组为例[J]. 天然气地球科学, 2018, 29(4):468-480.
doi: 10.11764/j.issn.1672-1926.2018.03.010
HU Xiangyang, LI Hongtao, SHI Yunqing, et al. Sedimentary characteristics and reservoirs distribution from Penglaizhen Formation 3rd member in slope belt of Western Sichuan Depression:A case study of JP23sandstone group from Shifang area[J]. Natural Gas Geoscience, 2018, 29(4):468-480.
doi: 10.11764/j.issn.1672-1926.2018.03.010
[4] 袁玥. 新都气田蓬莱镇组气藏挖潜评价[D]. 成都: 成都理工大学, 2020.
YUAN Yue. Potential tapping evaluation of Penglaizhen Formation gas reservoir Xindu Gasfield[D]. Chengdu: Chengdu Uni-versity of Technology, 2020.
[5] 王铮. 基于井震一体化的洛带蓬莱镇组一段沉积相综合研究[D]. 成都: 成都理工大学, 2022.
WANG Zheng. Comprehensive study on sedimentary facies of the first member of Penglaizhen Formation in Luodai based on well-seismic integration[D]. Chengdu: Chengdu University of Technology, 2022.
[6] 胡兴杰. 川西洛带气田蓬莱镇组地震储层预测[D]. 成都: 成都理工大学, 2021.
HU Xingjie. Seismic reservoir prediction of Penglaizhen Forma-tion in Luodai gas field,Western Sichuan[D]. Chengdu: Cheng-du University of Technology, 2021.
[7] 庄彬. 川西洛带气田蓬莱镇组二段JP3砂组沉积微相及优质储层预测[D]. 成都: 成都理工大学, 2023.
ZHUANG Bin. Sedimentary microfacies and high-quality reservoirs prediction of JP3 sand group in the second section of Peng-laizhen Formation, Luodai gas field,Western Sichuan[D]. Cheng-du: Chengdu University of Technology, 2023.
[8] 刘兴艳, 李墨寒, 叶泰然. 川西侏罗系复杂河道精细刻画及沉积相带识别[J]. 石油物探, 2019, 58(5):750-757.
doi: 10.3969/j.issn.1000-1441.2019.05.014
LIU Xingyan, LI Mohan, YE Tairan. Fine characterization of complicated channels in western Sichuan and identification of sedimentary facies[J]. Geophysical Prospecting for Petroleum, 2019, 58(5):750-757.
doi: 10.3969/j.issn.1000-1441.2019.05.014
[9] 邓莉, 刘君龙, 钱玉贵, 等. 川西地区龙门山前带侏罗系物源与沉积体系演化[J]. 石油与天然气地质, 2019, 40(2):380-391.
DENG Li, LIU Junlong, QIAN Yugui, et al. Provenance and sedimentary system of the Jurassic successions in the front of Longmen Mountain in western Sichuan Basin[J]. Oil & Gas Geology, 2019, 40(2):380-391.
[10] 熊坤, 王洪辉, 何丹, 等. 洛带气田蓬莱镇组沉积相研究[J]. 四川文理学院学报, 2013, 23(2):44-48.
XIONG Kun, WANG Honghui, HE Dan, et al. Research on the sedimentary facies of Penglai layer in Luodai gas field[J]. Sichuan University of Arts and Science Journal, 2013, 23(2):44-48.
[11] 尹朝云, 刘伟, 罗长川. 洛带气田蓬莱镇组气藏储层及储量评价研究[J]. 断块油气田, 2007, 44(3):44-46.
YIN Chaoyun, LIU Wei, LUO Changchuan. Research on Peng-laizhen Formation gas reservoir in Luodai gas field and its reserve evaluation[J]. Fault-Block Oil & Gas Field, 2007, 44(3):44-46.
[12] 张坤, 刘宏, 谭磊, 等. 川中北部蓬莱地区震旦系灯影组二段地震沉积学特征[J]. 岩性油气藏, 2025, 37(2):189-200.
doi: 10.12108/yxyqc.20250217
ZHANG Kun, LIU Hong, TAN Lei, et al. Seismic sedimentology characteristics of the second member of Sinian Dengying Forma-tion in Penglai area,north-central Sichuan Basin[J]. Lithologic Reservoirs, 2025, 37(2):189-200.
doi: 10.12108/yxyqc.20250217
[13] 徐世东, 陈书平, 薛佳雯, 等. 井震数据联合驱动下砂体叠置模式构建技术及应用:以WX油田东北部姚家组葡萄花油层为例[J]. 石油地球物理勘探, 2023, 58(1):178-189.
XU Shidong, CHEN Shuping, XUE Jiawen, et al. Construction technology of superimposition patterns of sandbodies driven by well-seismic data and its application:Taking the Putaohua reservoir of Yaojia Formation in the northeastern WX Oilfield as an example[J]. Oil Geophysical Prospecting, 2023, 58(1):178-189.
[14] 李宏涛. 基于井-震联合的辫状河沉积微相分析:以鄂尔多斯盆地东胜气田锦77井区为例[J]. 石油与天然气地质, 2025, 46(1):91-107.
LI Hongtao. Microfacies analysis of braided river deposits based on seismic-to-well ties:A case study of the Jin-77 well block in the Dongsheng gas field,Ordos Basin[J]. Oil & Gas Geology, 2025, 46(1):91-107.
[15] 杨春生, 焦艳丽, 蔡东梅, 等. 井-震结合曲流型储层构型研究及应用:以大庆长垣西部斜坡区为例[J]. 石油地球物理勘探, 2024, 59(6):1330-1339.
YANG Chunsheng, JIAO Yanli, CAI Dongmei, et al. Meandering reservoir architecture based on well-seismic analysis and its deve-lopment and application:Taking the western slope area of Daqing Oilfield as an example[J]. Oil Geophysical Prospecting, 2024, 59(6):1330-1339.
[16] 娄敏, 蔡华, 何贤科, 等. 地震沉积学在东海陆架盆地西湖凹陷河流-三角洲相储集层刻画中的应用[J]. 石油勘探与开发, 2023, 50(1):125-138.
doi: 10.11698/PED.20220204
LOU Min, CAI Hua, HE Xianke, et al. Application of seismic sedimentology in characterization of fluvial-deltaic reservoirs in Xihu sag,East China Sea shelf basin[J]. Petroleum Exploration and Development, 2023, 50(1):125-138.
doi: 10.1016/S1876-3804(22)60374-4
[17] 朱筱敏, 刘长利, 张义娜, 等. 地震沉积学在陆相湖盆三角洲砂体预测中的应用[J]. 沉积学报, 2009, 27(5):915-921.
ZHU Xiaomin, LIU Changli, ZHANG Yina, et al. On seismic sedimentology of lacustrine deltaic depositional systems[J]. Acta Sedimentologica Sinica, 2009, 27(5):915-921.
[18] 王剑, 吴亚宁, 王涛, 等. 地震分频多级稀疏正则化反演方法:以渤中凹陷石臼坨凸起古近系东营组二段为例[J]. 岩性油气藏, 2025, 37(4):38-49.
doi: 10.12108/yxyqc.20250404
WANG Jian, WU Yaning, WANG Tao, et al. Multi-level sparse regularization inversion method for seismic frequency division:A case study from the second member of Paleogene Dongying Formation in Shijiutuo Uplift,Bozhong Sag[J]. Lithologic Reser-voirs, 2025, 37(4):38-49.
[19] 刘迎宝, 李元昊, 翟文彬, 等. 极缓坡湖盆浅水三角洲前缘砂体类型及成因模式:以鄂尔多斯盆地郝滩地区三叠系长81亚段为例[J]. 岩性油气藏, 2025, 37(3):140-152.
doi: 10.12108/yxyqc.20250313
LIU Yingbao, LI Yuanhao, ZHAI Wenbin, et al. Types and genetic models of sand bodies in shallow water delta front of extremely gentle slope lake basin:A case study of Chang 81submember of Triassic in Haotan area,Ordos Basin[J]. Lithologic Reservoirs, 2025, 37(3):140-152.
doi: 10.12108/yxyqc.20250313
[20] 张阳, 邱隆伟, 李际, 等. 基于模糊C均值地震属性聚类的沉积相分析[J]. 中国石油大学学报(自然科学版), 2015, 39(4):53-61.
ZHANG Yang, QIU Longwei, LI Ji, et al. Sedimentary facies analysis based on cluster of seismic attributes by fuzzy C-means algorithm[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(4):53-61.
[1] 孟阳, 曹小朋, 赵浩, 杨明林, 李志鹏, 田振磊, 乌洪翠, 蒋越. 准噶尔盆地永进地区侏罗系齐古组天然裂缝发育特征及主控因素[J]. 岩性油气藏, 2026, 38(1): 13-25.
[2] 张盟勃, 彭剑康, 崔晓杰, 张栋, 倪娜, 龙盛芳, 魏朋辉. 鄂尔多斯盆地米脂北地区石炭系本溪组煤岩气储层地震预测技术[J]. 岩性油气藏, 2026, 38(1): 162-171.
[3] 马代兵, 马文涛, 韩文元, 陈尚斌, 郭星星. 民和盆地窑街矿区侏罗系窑街组煤层气成藏条件及有利区优选[J]. 岩性油气藏, 2026, 38(1): 26-37.
[4] 殷疆, 焦雪君, 李小龙, 李泰福, 申战勇, 李梦茜, 孙睿, 朱玉双. 基于随机森林优化算法的低电阻率储层含油饱和度评价方法[J]. 岩性油气藏, 2026, 38(1): 55-66.
[5] 叶慧, 朱峰, 王贵重, 石万忠, 康晓宁, 董国宁, 娜孜依曼, 王任. 准噶尔盆地二叠纪—侏罗纪古地貌恢复及其油气地质意义[J]. 岩性油气藏, 2025, 37(5): 122-132.
[6] 田继先, 石正灏, 李剑, 沙威, 蒋峥文, 杨磊, 鱼雪, 蒲永霞. 柴达木盆地侏罗系煤岩气成藏条件与勘探潜力[J]. 岩性油气藏, 2025, 37(4): 17-25.
[7] 尹照普, 朱峰, 周志尧, 王丽丽, 刘晓晔, 娜孜伊曼, 汪钰婷, 黄大瑞. 准噶尔盆地莫南斜坡侏罗系西山窑组油气成藏条件及富集主控因素[J]. 岩性油气藏, 2025, 37(3): 33-46.
[8] 杨旭, 白鸣生, 龚汉渤, 李皋, 陶祖文. 川西新场地区三叠系须二段构造裂缝特征及定量预测[J]. 岩性油气藏, 2025, 37(3): 73-83.
[9] 何小龙, 张兵, 徐川, 肖斌, 田云英, 李琢, 何一帆. 窄河道砂体中钙质夹层特征及其对储层质量的影响——以川西北梓潼地区侏罗系沙一段为例[J]. 岩性油气藏, 2025, 37(3): 129-139.
[10] 刘迎宝, 李元昊, 翟文彬, 赵文暄, 李哲, 杨龙华, 郭雅倩. 极缓坡湖盆浅水三角洲前缘砂体类型及成因模式——以鄂尔多斯盆地郝滩地区三叠系长81亚段为例[J]. 岩性油气藏, 2025, 37(3): 140-152.
[11] 廖新武, 杨庆红, 李超, 郭诚, 赵大林. 渤海湾盆地垦利6-1油田新近系明化镇组下段浅水三角洲沉积特征[J]. 岩性油气藏, 2025, 37(2): 1-11.
[12] 尹艳树, 黄圣斌, 黄奇志, 谢鹏飞, 王立鑫, 吴伟. 尼日尔Termit盆地Koulele油田始新统浅水三角洲前缘沉积特征及成因模式[J]. 岩性油气藏, 2025, 37(2): 12-25.
[13] 吴冠桦, 刘宏, 宋林珂, 曾琪, 杨涛. 四川盆地西南部东瓜场地区侏罗系沙溪庙组沉积特征及有利储层预测[J]. 岩性油气藏, 2025, 37(2): 92-102.
[14] 胡鑫, 朱筱敏, 金绪铃, 黄成, 周越, 程长领, 修金磊, 任新成. 准噶尔盆地永进地区侏罗系齐古组浅水辫状河三角洲沉积特征[J]. 岩性油气藏, 2025, 37(2): 115-126.
[15] 徐兆辉, 曾洪流, 胡素云, 张君龙, 刘伟, 周红英, 马德波, 傅启龙. 地震沉积学在塔里木盆地古城地区下寒武统沉积结构与储层预测中的应用[J]. 岩性油气藏, 2025, 37(2): 153-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!