岩性油气藏 ›› 2012, Vol. 24 ›› Issue (5): 76–82.doi: 10.3969/j.issn.1673-8926.2012.05.014

• 油气地质 • 上一篇    下一篇

东营凹陷古近系超压封闭层特征及其封盖能力研究

汪旭东1,查明2,曲江秀2,高长海2,陈中红2,张守春3   

  1. 1.中海石油(中国)有限公司深圳分公司研究院,广东广州510240; 2.中国石油大学(华东)地球科学与 技术学院,山东青岛266580; 3.中国石化胜利油田分公司地质科学研究院,山东东营257015
  • 出版日期:2012-10-20 发布日期:2012-10-20
  • 作者简介:汪旭东(1986-),男,硕士,主要从事油气地质与勘探方面的研究工作。地址:(510240)广东省广州市海珠区江南大道中168 号海洋石油大厦1615 室。电话:(020)84241419。E-mail:wangxd6@cnooc.com.cn
  • 基金资助:

    国家科技重大专项“重点盆地地层油气藏成藏机理与分布规律”(编号:2011ZX05001)和国家自然科学基金项目“超压湖盆原油 裂解成气门限及动力学模型”(编号:40802026)联合资助。

Study on characteristics of the Paleocene overpressure seal and its sealing ability in Dongying Depression

WANG Xudong1, ZHA Ming2, QU Jiangxiu2, GAO Changhai2,CHEN Zhonghong2, ZHANG Shouchun3   

  1. 1. Research Institute of Shenzhen Branch, CNOOC Ltd., Guangzhou 510240, China; 2. School of Geosciences, China University of Petroleum, Qingdao 266580, China; 3. Geological Scientific Research Institute, Shengli Oilfield Company, Sinopec, Dongying 257015, China
  • Online:2012-10-20 Published:2012-10-20

摘要:

东营凹陷古近系地层的超压现象十分普遍。依据超压区泥岩的测井响应特征,分析了封闭层在纵向 上的分布,并在此基础上对其岩石学特征及封盖能力进行了系统研究。结果表明:超压封闭层的埋深主要 为2 400~2 800 m,在平面上表现为洼陷中心深而洼陷边缘和中央隆起带浅的特征;其岩性为一套深灰 色泥岩、灰质泥岩和砂质泥岩的组合,厚度为500~900 m,砂泥比平均值为0.092,单层泥岩的最大厚度 大于10 m。全岩矿物的X 射线衍射分析表明,组成封闭层的泥质岩中含有大量的碳酸盐矿物和黏土矿 物,泥岩的成岩作用发生在伊/蒙混层矿物的迅速转化期,且对应于第一期和第二期碳酸盐的大量产出段。 超压封闭层能封闭剩余压力大于14 MPa 的超压,这与其具有较高的排替压力(平均为5.45 MPa)密切相 关,此外封闭层的厚度及成岩作用的强度也是影响其物性封盖能力的重要因素。

关键词: 盖层, 毛管压力, 物性圈闭, 底水油藏, 顶水油藏, 稠油

Abstract:

Observed pressure reveals that overpressure is widely developed in the Paleocene in DongyingDepression, Eastern China. According to logging responses of overpressure mudstones, the vertical distribution of overpressure seal is identified. On this basis, its petrological characteristics and sealing ability were systematically studied. The result shows that the burial depth for the Paleocene overpressure seal top is mainly 2 400~2 800 m and became shallower from the center to edge of the sag and the central uplift in the plane. The lithological composition of the overpressure seal is formed by a group of dark graymudstone, calcareous mudstone and sandymudstone, ofwhich the average sand-clay ratio is 0.092, the thickness is 500~900 m and the maximal thickness of the single mudstone is greater than 10 meters. Whole rock X-ray diffraction shows that the mudstones of the pressure seal contain large amounts of carbonate minerals and clay minerals. Mudstone diagenesis reaches the rapid transformation of the illitemontmorillonite interlayer minerals, and corresponds to the mass carbonate minerals during the first and second stage. The overpressure seal could close surplus pressure greater than 14 MPa, which had a close relation with high displacement pressure (average 5.45 MPa). Besides, thickness and diagenetic grade of the overpressure seal are important influencing factors for its sealing ability.

Key words: cap rocks, capillary pressure, physical property trap, bottom-water reservoir, top-water reservoir, heavy oil

[1] Bradley J S. Abnormal formation pressure[J]. AAPG Bulletin,1975,59(6):957-973.
[2] Hunt J M. Generation and migration of petroleum from abnormally pressured fluid compartments [J]. AAPG Bulletin,1990,74 (1):1-12.
[3] Magara K. Pressure sealing:An important agent for hydrocarbon entrapment [J]. Journal of Petroleum Science and Engineering,1993,9(1): 67-80.
[4] Lee Y,Deming D. Overpressures in Anadarko basins,southwestern Oklahoma:Static or dynamic? [J]. AAPG Bulletin,2002,86 (1):145-460.
[5] 郝芳.超压盆地生烃作用动力学与油气成藏机理[M].北京:科学出版社,2005:29-36.
[6] 邹华耀,郝芳,张伯桥,等.准噶尔盆地中部超压封闭层的岩石学特征与封闭机理[J].岩石学报,2006,22(8):2213-2219.
[7] 杨智,邹才能,何生,等.准噶尔盆地腹部超压顶面附近碳酸盐胶结带的成因机理[J].中国科学:地球科学,2010,40(4):439-451.
[8] 李丕龙,姜在兴,马在平.东营凹陷储集体与油气分布[M].北京:石油工业出版社,2000:1-2.
[9] 张林晔,刘庆,张春荣,等.东营凹陷成烃与成藏关系研究[M].北京:地质出版社,2005:5-34.
[1] 刘化清, 刘宗堡, 吴孔友, 徐怀民, 杨占龙, 孙夕平, 倪长宽, 康继伦, 王牧, 靳继坤. 岩性地层油气藏区带及圈闭评价技术研究新进展[J]. 岩性油气藏, 2021, 33(1): 25-36.
[2] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[3] 张运来, 陈建波, 周海燕, 张吉磊, 章威. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153.
[4] 金秋月, 杨希冰, 胡林, 卢梅. 北部湾盆地稠油地球化学特征及成因分析[J]. 岩性油气藏, 2020, 32(4): 81-88.
[5] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[6] 张吉磊, 罗宪波, 张运来, 何逸凡, 周焱斌. 提高稠油底水油藏转注井注水效率研究[J]. 岩性油气藏, 2019, 31(4): 141-148.
[7] 李传亮, 朱苏阳, 刘东华. 盖层封堵油气的机理研究[J]. 岩性油气藏, 2019, 31(1): 12-19.
[8] 张运来, 廖新武, 胡勇, 李廷礼, 苏进昌. 海上稠油油田高含水期开发模式研究[J]. 岩性油气藏, 2018, 30(4): 120-126.
[9] 岳世俊, 郑长龙, 杨兆平, 景紫岩, 刘雄志, 金保中. 枚举平衡法在油藏数值模拟初始化中的应用[J]. 岩性油气藏, 2017, 29(6): 142-147.
[10] 刘航宇, 田中元, 徐振永. 基于分形特征的碳酸盐岩储层孔隙结构定量评价[J]. 岩性油气藏, 2017, 29(5): 97-105.
[11] 李传亮, 朱苏阳, 彭朝阳, 王凤兰, 杜庆龙, 由春梅. 煤层气井突然产气机理分析[J]. 岩性油气藏, 2017, 29(2): 145-149.
[12] 李传亮,朱苏阳,聂 旷,邓鹏,刘东华. 恒速压汞不能确定孔喉比[J]. 岩性油气藏, 2016, 28(6): 134-139.
[13] 陈丽华. 强水敏储层矿物高温变化对储层物性的影响——以金家油田沙一段为例[J]. 岩性油气藏, 2016, 28(4): 121-126.
[14] 李传亮,朱苏阳. 水驱油效率可达到 100%[J]. 岩性油气藏, 2016, 28(1): 1-5.
[15] 司马立强,李 清,杨 毅,陈 强 . 用 J 函数法求取碳酸盐岩储层饱和度方法探讨[J]. 岩性油气藏, 2014, 26(6): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .